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Abstract

People form metacognitive representations of their own abilities across a range of tasks. How these representations are influ-
enced by errors during learning is poorly understood. Here, we ask how metacognitive confidence judgments of performance
during motor learning are shaped by the learner’s recent history of errors. Across four motor learning experiments, our computa-
tional modeling approach demonstrated that people’s confidence judgments are best explained by a recency-weighted averag-
ing of visually observed errors. Moreover, in the formation of these confidence estimates, people appear to reweight observed
motor errors according to a subjective cost function. Confidence judgments were adaptive, incorporating recent motor errors in
a manner that was sensitive to the volatility of the learning environment, integrating a shallower history when the environment
was more volatile. Finally, confidence tracked motor errors in the context of both implicit and explicit motor learning but only
showed evidence of influencing behavior in the latter. Our study thus provides a novel descriptive model that successfully
approximates the dynamics of metacognitive judgments during motor learning.

NEW & NOTEWORTHY This study examined how, during visuomotor learning, people’s confidence in their performance is
shaped by their recent history of errors. Using computational modeling, we found that confidence incorporated recent error his-
tory, tracked subjective error costs, was sensitive to environmental volatility, and in some contexts may influence learning.
Together, these results provide a novel model of metacognitive judgments during motor learning that could be applied to future
computational and neural studies at the interface of higher-order cognition and motor control.

metacognitive judgments; motor learning; sensorimotor adaptation; sensory uncertainty; subjective confidence

INTRODUCTION

Humans have the ability to monitor the qualities of
their own performance in a task, a capacity often referred
to as “metacognition.” Metacognitive processes have been
observed across a range of domains, including simple per-
ceptual decision-making (1), value-based decision-making
(2), social cognition (3), and memory (4). Over a century of
research has shown that people’s metacognitive judgments
(e.g., their explicitly reported confidence in their choices/
abilities) often closely track behavioral metrics like accuracy
and response time (5). In one of the most studied laboratory
models of metacognition and confidence—perceptual deci-
sion-making—researchers have used computational models
to uncover strong links between confidence in a choice and

the perceptual evidence accumulated for that choice over
its competitors (e.g., “those dots are mostly moving left”)
(6–8). Moreover, researchers have even discovered cer-
tain neural populations that simultaneously encode both
accumulated evidence and decision confidence (9).

While studying confidence for independent choices
(actions) has been a fruitful endeavor, one putatively more
ecologically relevant question is how confidence evolves
during the learning of actions (e.g., motor learning, rein-
forcement learning, etc.). Consider the experience of learn-
ing a new tune on an instrument: as one reduces their error,
their mental representation of their own skill, a metacogni-
tive judgment, evolves over time (e.g., “Oh, I’m getting good
at that section”). But instead of thinking of each action as an
independent decision, as in perceptual decision-making
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tasks, one’s extended error history is likely key to determin-
ing how confident they are in specific actions.

While there has beenminimal research on confidence and
motor learning, there has been recent research on confi-
dence and learning in nonmotor domains (3, 10–15). One
recent study (10) used a perceptual decision task in which
participants reported their estimate of the transition proba-
bilities between two visual or auditory stimuli as well as their
confidence in this report. The results indicated that partici-
pants not only learn a statistical model of transition proba-
bilities over time but also that their confidence ratings
closely track this statistical inference. This work demon-
strates that in a perceptual decision-making context, peo-
ple’s confidence judgments closely correlate with their
performance in tracking stochastic variables (11). Other work
in the reinforcement learning domain has suggested that
confidence in one’s choices during learning evolves along
with learned latent value representations and is subject to
value-driven biases (2). Moreover, volatility in an environ-
ment, a second-order statistic tracked overmany trials, indu-
ces uncertainty in an agent, and agents tend to operate with
a faster learning rate in these uncertain environments (12).
This work suggests that higher-order variables like confi-
dence may also correspond to the statistical uncertainty that
underpins the learning process itself (13, 14).

Subjective confidence in the domain of motor learning
has been less well studied, but some work has attempted to
capture the role of continuous motor errors on subjective
evaluations of confidence. For instance, one recent study
(16) showed that individuals are able to predict their future
performance on a sensorimotor task and also leverage their
confidence in their future performance to maximize future
rewards. Another recent study (17) demonstrated that subjec-
tive confidence tracks one’s precision in a continuous tempo-
ral estimation task. Some work on motor sequence learning
has looked at amore “zoomed-out” form of confidence, block-
and day-level judgments of one’s own ability (18). Lastly, rele-
vant recent computational work has shown that individuals
might use information about their prior motor variability to
make confidence judgments of their motor precision, both
prospectively (before movement, as we do in this study) and
retrospectively (after movement) (19).

While these studies suggest that confidence in a motor
context integrates prior history of performance (perhaps in a
Bayesian manner), they do not directly address metacogni-
tive dynamics during the protracted alteration of motor
commands (20), the context of interest here. We believe
studying confidence during motor learning may be key to
understanding how people actively monitor their own per-
formance, how the brain might represent uncertainty in
movements over time, and perhaps how confidence may
modulate the gain on the motor system’s response to errors.
We thus address the question of how confidence evolves dur-
ing motor learning, which may shed light on the psychologi-
cal processes involved in motor learning, computationally
isolate higher-level metacognitive variables for investigation
in future neural studies, and perhaps be useful for increasing
people’s motivation to learn in clinical and nonclinical
settings.

We performed four experiments and used a descriptive
computational modeling approach to study confidence

during motor learning. We hypothesized that heuristic
models that take into account one’s recent error history
would sufficiently capture the evolution of confidence
judgments during motor learning and would do so in a
manner that adapts to the distribution of errors. We com-
pared these models to alternative hypotheses that mod-
eled confidence as a simple “read-out” of the most recent
error outcome. Given recent distinctions between cogni-
tive versus “low-level” forms of motor learning (10), we
also tested our models in cases where motor learning was
more “explicit” (i.e., requiring deliberate changes in action
selection (53, 54, 55); experiments 1 and 2) versus implicit
(i.e., involving subconscious recalibration of movement ki-
nematics (53, 56, 57); experiments 3 and 4), allowing us to
test the effects of different forms of motor learning on con-
fidence. Finally, we also performed exploratory analyses
asking if confidence in turn exerts an effect on (explicit or
implicit) motor learning.

To preview our key findings, this straightforward model
significantly outperforms other model variants that do not
incorporate error history and also reveals that the dynam-
ics of confidence ratings during motor learning adapt to
environmental volatility. The model succeeds in both
explicit- and implicit-dominant motor learning contexts,
supporting the idea that confidence tracks a generic error
signal (however, the specific dynamics of confidence dif-
fered between these two contexts). Finally, in an explora-
tory analysis, we present evidence that confidence can
also affect learning, in cases where learning was primarily
driven by changes in explicit action selection, those
changes were better explained when considering the
effects of both motor error and confidence judgments ver-
sus just motor error alone.

METHODS

Participants

Experiments 1 and 2 were conducted in laboratory. A total
of 38 neurologically healthy participants [experiment 1: n ¼
18; age ¼ 21±5 yr; sex: 10 females, 1 preferred not to answer;
handedness: 16 right-handed (>40 on the Edinburgh hand-
edness inventory) (21); experiment 2: n ¼ 20; age ¼ 20±5 yr;
sex: 13 females; handedness: 19 right-handed] from the Yale
University subject pool participated in this study.

For experiments 3 and 4, participants were recruited via
Prolific, an online platform. Recruitment was restricted to
residents of the United States who were fluent in English,
had normal or corrected to normal vision, had a Prolific ap-
proval rating greater than 95%, and had completed at least
40 web-based experiments previously. Legal sex (the current
designation on a person’s birth certificate, driver’s license,
and/or US state identification) was reported on this platform.
Handedness was self-reported within the categories of right-
handed, left-handed, or ambidextrous. A total of 55 partici-
pants (experiment 3: n ¼ 25; age ¼ 28±5 yr; sex: 10 females;
handedness: 24 right-handed, 1 ambidextrous. Experiment
4: n¼ 30 age¼ 27±5 yr; sex: 13 female; handedness: 28 right-
handed, 2 ambidextrous) performed the online experiments.
In-laboratory participants received monetary compensation or
course credit for their participation. Online participants received
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monetary compensation. Written informed consent was
obtained from all participants before testing and the ex-
perimental protocol was approved in accordance with Yale
University’s Institutional Review Board. Online partici-
pants who did not vary their confidence ratings over the
course of more than 20 consecutive trials were excluded.
This excluded one participant from experiment 3 and
two participants from experiment 4.

Apparatus

For experiments 1 and 2, participants sat on a height-
adjustable chair facing a 24.5-in. LCDmonitor (Asus VG259QM;
display size: 543.74 mm � 302.62 mm; resolution: 1,920 �
1,080 pixels; frame rate set to 240 Hz; 1 ms response time),
positioned horizontally �30 cm in front of the participant
above the table platform, thus preventing direct vision
of the hand (Fig. 1A). In their dominant hand, they held a
stylus embedded within a custommodified paddle, which
they could slide across a digitizing tablet (Wacom
PTH860; active area: 311 mm � 216 mm). Hand position
was recorded from the tip of the stylus sampled by the
tablet at 200 Hz. Stimulus presentation and movement
recording were controlled by a custom-built Octave script
(GNU Octave v5.2.0; Psychtoolbox-3 v3.0.18; Ubuntu
20.04.4 LTS). Aiming and confidence ratings were con-
trolled by the nondominant hand and entered on a USB
keyboard (Fig. 1B).

For experiments 3 and 4, participants were restricted to
using their home desktop computers with a mouse and key-
board. Average monitor frame rates were 90 Hz (SD: 40 Hz)
[60 Hz (54%), 120 Hz (20%), 165 Hz (12%), 144 Hz (10%), 75 Hz
(4%)]. Stimulus presentation and movement recording were
controlled by custom-built JavaScript code (19). The online
task environment differed in terms of the inclusion of on-
screen instructions at the start of the task, in place of verbal
instructions provided in laboratory.

Task

Trials in experiments 1 and 2 consisted of an aiming phase, a
confidence rating phase, and then a reaching phase (Fig. 1B).
The aiming phase was removed in experiments 3 and 4.
To briefly summarize the phases: during the aiming phase,
participants were instructed to “position the aiming reticle
where you intend to move your hand;” during the confi-
dence reporting phase, participants were instructed to “rate
how confident you are that where you aimed is correct” (i.e.,
that you would succeed at hitting the target given that move-
ment plan); and during the reach phase, subjects made rapid
reaches to the displayed target.

During the reaching phase, participants performed center-
out-reaching movements from a central start location in the
center of the monitor to try and accurately slice through a
visual cursor on one of eight visual targets (0�, 45�, 90�, 135�,
180�, 225�, 270�, and 315�) arranged around an invisible circle
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Figure 1. Experimental design. A: exper-
imental apparatus. Participants made
reaching movements over a digitizing
tablet while holding a modified air hockey
paddle. B: schematic of two example trials.
In experiments 1 and 2 only, participants first
moved a crosshair to specify their intended
reach direction (“Aim”), then in all experi-
ments, participants rated their confidence in
that their movement would succeed in strik-
ing the target (“Report”), and finally exe-
cuted their reach with feedback (“Reach”).
C: perturbation schedule in experiment 1.
D: perturbation schedule in experiment 2.
E: perturbation schedule in experiment 3. F:
perturbation schedule in experiment 4. The
gray bars in E and F represent the range of
perturbation values pseudorandomly drawn
on each trial (mean ±7.5�).
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with a radius of 10 cm. In experiments 1 and 2, the target
location for each trial was pseudorandomly selected. In
experiments 3 and 4, the target location was fixed at 45� for
each trial. An off-axis target location was selected to avoid
any perceptual and/ormotor bias thatmay be present during
reaches in a cardinal direction. Participants were instructed
to move the stylus as quickly as possible from the start loca-
tion in the direction of the displayed target (or the direction
of their reported aiming location) and “slice through it.” The
start location was marked by a filled white circle of 7 mm in
diameter. The target locations were marked by filled green
circles of 10 mm in diameter. Online visual feedback was
given by a cursor (filled white circle, radius 2.5 mm), except
for the washout phase in experiment 1. If the reach duration
exceeded 400 ms, a text prompt appeared on the monitor
reminding participants to “please speed up your reach,” and
the trial was repeated (with a new target location in experi-
ments 1 and 2).

During the aiming phase (experiments 1 and 2 only), a
white crosshair 7 mm in diameter was overlaid on the target
(Fig. 1B). Its movement was constrained to the invisible
circle with a radius of 10 cm from the start location. The aim-
ing crosshair’s location was adjusted with the left hand using
the left and right arrow keys, which drove crosshair move-
ments to the counterclockwise and clockwise directions,
respectively. When participants were satisfied with the
match between their intended reach direction and the aim-
ing crosshair’s position, they registered their aim with the
“enter” key.

During the confidence rating phase, which directly fol-
lowed the aiming phase when included, a rating bar (20mm�
40 mm) was displayed 15� counterclockwise of the target. A
white line, representing the participant’s confidence rating
was initialized in the middle of the bar (50% confidence). As
confidence increased toward 100%, the bar’s color changed
from yellow to green. As confidence decreased toward 0%, the
bar’s color changed from yellow to red. Participants reported
their confidence level with their left hand using the up and
down arrows and registered their confidence rating with the
“enter” key.

Experiment 1 included reach baseline, report practice, ad-
aptation, and washout blocks (Fig. 1C). Baseline consisted of
24 trials (3 trials per target) with veridical online cursor feed-
back provided for the duration of the reach. Report practice
consisted of 48 trials (6 trials per target) partitioned into the
“aim,” “confidence report,” and “reach” phases. Online vis-
ual feedback was provided throughout all reaches, except
during the washout phase in experiment 1, which had no vis-
ual feedback. Adaptation consisted of 240 trials (30 trials per
target) that included all three trial phases (Fig. 1C). Crucially,
during the reach phase, the cursor was rotated by 30� (with
CW/CCW rotations evenly counterbalanced across partici-
pants). Washout (experiment 1 only) consisted of 48 reach tri-
als (6 trials per target) with no cursor feedback provided for
the duration of the reach.

Experiment 2 included 16 baseline trials (2 per target), 16
report practice trials (2 per target), 208 adaptation trials (26
per target), and no washout trials (Fig. 1D). The adaptation
trials differed from experiment 1 only in terms of the rotation
perturbation applied to the cursor. In experiment 2, rotation
angles of �60�, �45�, �30�, �15�, 15�, 30�, 45�, and 60� were

pseudorandomly applied across 24 blocks of 8 trial mini-
blocks (3� 8 trial mini-blocks per rotation angle, across 8 tar-
gets, thus 192 rotation trials total). Four additional mini-
blocks consisting of 4 trials of 0� rotation were interleaved
throughout adaptation. No specific rotation angle or sign
was repeated consecutively (Fig. 1D). Note that the number
of trials included in experiment 2 is the minimum required
to ensure that all perturbations are applied to all targets
three times each, while accounting for the lengthy intertrial
interval that resulted from aiming to compensate across a
larger range of perturbation angles.

Experiment 3 included 10 baseline trials, 20 confidence
report practice trials, 150 adaptation trials, and 20 washout
trials (Fig. 1E). The adaptation trials differed from experi-
ments 1 and 2 in terms of the rotation perturbation applied to
the cursor, which was designed to only induce implicit learn-
ing. In experiment 3, trial-by-trial perturbations were pseu-
dorandomly drawn from a uniform distribution with a range
of ±7.5� with a mean value that increases linearly with a step
size of 0.33� up to amaximumof 15� (with CW/CCW rotations
evenly counterbalanced across participants). By gradually
increasing the mean perturbation, the use of explicit aiming
strategies was thus constrained (22, 23, 58).

To replicate and generalize the results of experiment 3,
experiment 4 included the same trial structure as experiment
3 but with a slightly different perturbation schedule. In
experiment 4, trial-by-trial perturbations were pseudoran-
domly drawn from a uniform distribution with a range of
±7.5� centered around a mean of 0�, and the mean stayed at
zero for the duration of the experiment. The experiment
included the same trial structure as experiment 3 with only
one target and no explicit aiming phase. Note that experi-
ments 3 and 4 had fewer trials compared with experiments 1
and 2 because they involved reaching to a single target
instead ofmultiple targets.

Statistical Analysis

Primary dependent variables were confidence judgments
and recorded hand angles on every trial. Since participants
were instructed to always adjust the confidence bar by at
least one unit, trials where the confidence rating remained at
the initial 50% mark were removed [exp. 1: 353 out of 5,184
trials (7.39%); exp. 2: 390 out of 4,480 trials (8.71%)].
Excluding these trials did not change the identity of the win-
ning model, nor did it significantly change any of the model
parameters [all Wilcoxon rank-sum tests comparing parame-
ters between exclusion and nonexclusion model fits were in-
significant (P ¼ 0.60–0.99)]. Data were analyzed using
Matlab (MathWorks, Inc. Version 2022a). Model fits were
computed using Matlab’s fmincon function, minimizing the
SSE between our confidence models and the confidence
report data. Violin plots were generated using the Violinplot
function in Matlab (24). Data and analysis code can be
accessed at https://doi.org/10.5281/zenodo.7967741.

We validated model parameter optimization through pa-
rameter recovery and foundwe could achieve stable parame-
ter fits throughout. To do this, we fit model-predicted
confidence reports using the model that initially generated
these predictions and found that model parameters were
recovered to 100% accuracy within two iterations of fitting.
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R2 values were computed through linear regression of model
predictions and data. Reported DAIC (25) values reflect dif-
ferences in summed Akaike information criterion (AIC) val-
ues between eachmodel and the winningmodel.

Computational Modeling

The goal of our study was to examine how motor learning
relates to one’s metacognitive judgments of their movement
decisions. Participants performed a standard sensorimotor
adaptation task while also reporting their confidence in each
of their movements (i.e., chosen reach directions; Fig. 1). We
constructed computational models with the goal of predict-
ing these subjective confidence reports on each trial. All four
models we tested characterized confidence reports (Eq. 1) as
deviations from a maximum confidence “offset” that is pro-
portional to an estimate of previous sensorimotor error(s):

Confidence ¼ Confidencemax � g � jErrorj ð1Þ
where g represented an error scaling parameter. Here,
“Error” denotes the experienced “target error” (henceforth
TE), the absolute magnitude of the angular error of the cur-
sor relative to the target.

The first class of models we tested attempt to predict con-
fidence based simply on the current state of learning.
Specifically, these models relate confidence reports directly
to the most recent error signal, representing a local “one-
trial-back” (OTB) update rule. Within this model class, we
tested two model variants: In the objective-error one-trial-
back model (OTBobj), the true (i.e., actually observed) abso-
lute error of the cursor relative to the target was used to com-
pute confidence. Importantly, previous work has shown that
the cost of target errors is scaled subjectively via an approxi-
mate power law (26). Thus, we also fit a subjective-error one-
trial-back model (OTBsubj), which scaled all target errors by
an exponential free parameter, c:

Confidencet ¼ Confidencemax � g �j TEjct�1 ð2Þ
An exponent c > 1 suggests that large target errors are per-

ceived as relatively more salient (costly), and thus drive
sharper decreases in confidence versus small errors in a
manner that is not linearly proportional to the veridical
error. In contrast, 0 < c < 1 suggests that large errors are dis-
counted relative to their veridical magnitude and thus drive
weaker decreases in confidence than would be predicted by
the objective error model. Finally, c ¼ 1 reduces to the objec-
tive error case, where errors are not subjectively scaled and
confidence is linearly proportional to the veridical target
error magnitude.

The second class of models involved retaining a sort of
error memory via estimating a running average of target
errors across trials. This estimate is then used to generate
predicted confidence reports. We designed these so-called
“error-state-space” models to function as simple linear dy-
namical systems that update an estimate of the current error
“state” on every trial through a canonical delta rule:

djTEjt ¼ djTEjt�1 þ a � dt�1 ð3Þ

dt�1 ¼ jTEjt�1 � djTEjt�1 ð4Þ
In effect, this learning rule constructs an average of the

error state across trials and echoes the learning rule

employed in instrumental learning contexts for learning the
predictive value of a given stimulus (27) or state-space mod-
els used to model motor adaptation itself (28). The learning
rate a reflects the degree to which errors on previous trials
are incorporated into the estimate, with high a values (i.e.,
close to 1) reflecting a high degree of forgetting and low a val-
ues (i.e., close to 0) reflecting a more historical memory of
error across trials. Whenever the observed target error on
the previous trial was greater than (less than) the estimated
target error, the estimated target error would increase
(decrease) by an amount proportional to this “metacogni-
tive” prediction error.

Within this error-state-space (ESS) model class, there were
again two distinct variants: the objective-error state-space
model (ESSobj) computed the estimated error using the true
veridical target errors, whereas the subjective-error state-
space model (ESSsubj) computed the estimated error using
the subjectively scaled error with exponent c:

dt�1 ¼ jTEjct�1 � djTEjt�1 ð5Þ
where the estimated error tracks a history of subjective
errors, instead of objective errors. Nonetheless, both history
(ESS) models used the same equation to generate predicted
confidence reports (Eq. 1), now using an evolving estimate of
error state:

Confidence ¼ Confidencemax � g� djTEjt ð6Þ
Altogether, our fourmodels share two free parameters, the

maximum confidence offset and the error sensitivity scaling
parameter g. Moreover, both models with nonlinear subjec-
tive error cost functions share the c parameter. Finally, both
models with error state-space tracking share an additional
learning rate free parameter (a) relative to the one-trial-back
models.

Exploratory Regression Analysis

We performed an additional set of regression analyses to
ask if confidence computations have downstream effects on
learning. To that end, we fit general linear models (GLMs) to
changes in hand angle (all experiments) and changes in
explicit aim reports (experiments 1 and 2) from trial to trial.
The regressions were designed follows:

DhandAngle½tþ 1	 ¼ b0 þ bTEt
þ btrial in blockt ð7Þ

DhandAngle½tþ 1	 ¼ b0 þ bTEt
þ btrial in blockt þ bConft þ b Conft� TEtð Þ ð8Þ

Equation 7 denotes the first GLM that acted as a baseline
model to capture changes in movement kinematics from
trial t to trial t þ 1 using the TE on trial t and the current trial
in the rotation block (or mini-block for experiment 2) as pre-
dictors. Equation 8 denotes an expanded GLM in which con-
fidence ratings (Conf) on trial t were added as an additional
predictor, as well as the interaction between confidence rat-
ing and TE. For experiments 1 and 2, additional variants of
the above models were run on changes in explicit aim
reports rather than reach directions. Signs of kinematic (or
aim) changes were computed relative to the sign of the previ-
ous error, such that positive deltas reflected the correct adap-
tation direction. In experiments 1 and 2, where participants
occasionally skipped the rating phase and left the rating at
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50, we removed those trials from the regression analysis. In
addition, changes in hand angle (or explicit aim for experi-
ments 1 and 2) that were greater than 3 standard deviations
from their mean or were >20� in the nonadaptive direction
[i.e., likely “sign errors;” (29)] were removed. GLMs were fit
to each subject using the glmfit function in MATLAB.
Resulting model fits were compared using AIC to account for
the increasedmodel complexity in Eq. 8.

RESULTS

Experiment 1

We sought to explore how participants form subjective
judgments of confidence during a motor learning task (Fig.
1). Before performing a center-out reaching motion, partici-
pants reported their intended reach direction and rated their
confidence that their movement would be successful on a
continuous scale (Fig. 1B). After a brief baseline phase with
veridical cursor feedback, a sensorimotor perturbation of 30�

was applied (Fig. 1C), which subjects rapidly learned to com-
pensate for. Reach directions compensated well for the
applied rotation (Fig. 2A). On average, reach directions com-
pensated for 90% of the perturbation after �8 trials and 99%
[29.83� (SD: 3.08�)] averaged over the last 20 trials of the ad-
aptation phase. The retention ratio (first 5-trial average of
washout divided by the last 5-trial average of adaptation)
was 0.38 (SD: 0.14) [t(17)¼ 11.26, P¼ 2.6� 10�9).

During the unperturbed baseline phase of the experiment,
confidence reports remained relatively stable, as expected
[79.25 (SD: 14.67) averaged over all 48 baseline trials]. When
the perturbation was applied, confidence reports sharply
decreased to 45.31 (SD: 21.43 average over the first 5 trials of
the adaptation phase). Unsurprisingly, all of our models of
confidence were able to account for this decrease as they
were all sensitive to error. Following the initial decrease in
confidence, all participants gradually restored confidence to
near baseline levels as their reaching errors decreased by the
last 20 trials of adaptation [baseline confidence: 79 (SD: 15);
confidence in the last 20 trials: 78 (SD: 16); t(17) ¼ 0.17; P ¼
0.87] (Fig. 2B), which was also captured by all models. These

expected observations provide initial support for the general
form of Eq. 1, where confidence is proportional to error.

To get a better picture of the dynamics of subjects’ meta-
cognitive judgments, we turned to model comparisons. To re-
iterate the models tested (see METHODS for more detailed
descriptions): one class ofmodels, the “one-trial-back”models
(Eq. 2), predicted confidence reports on a given trial based on
the current state of learning. The objective-error one-trial-
back (OTBobj) model predicted confidence based on veridical
absolute cursor errors relative to the target, and the subjec-
tive-error one-trial-back (OTBsubj) model predicted confidence
based on errors that were scaled by a power law. The second
class of models, the “error-state-space” models, kept track of
an estimate of the average error on recent trials and used this
average error to compute predicted confidence reports. Again,
this class of models either kept track of objective errors (ESSobj
model) or subjectively scaled errors (ESSsubj model).

Of the four confidencemodels we developed, the ESSsubj best
explained the variance in confidence reports [R2¼0.41±0.23
(means ± SD)]. At the individual level, 14 out of 18 total sub-
jects were better fit by the winning model versus the sec-
ond-best model (Fig. 2C). Moreover, the ESS class of models
robustly outperformed the OTB class (Fig. 2C; Table 1). This
suggests that metacognitive judgments during sensorimo-
tor learning incorporate a continually updated history of
recent errors, rather than simply acting as a “read-out” of
the current state of learning. Furthermore, confidence was
better explained by using a subjective error term rather
than an objective one: the ESSsubj model better fit the
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Figure 2. Learning curves and model fitting for experiment
1 (n¼ 18). A: learning curve. Participants adapted their reach
angle in response to the 30� perturbation and showed sig-
nificant aftereffects in a washout phase. B: mean confi-
dence reports (black) and winning model fit (blue). C, top:
AIC differences between the best and second-best model
are shown for each subject (negative values represent bet-
ter fits for the winning model, ESSsubj). Bottom: summed
AIC values relative to the summed AIC value for the winning
model. All error shading ¼ 1 SE. AIC, Akaike information cri-
terion; ESS, error-state-space models.

Table 1. Model fit R2 and DAIC values in experiment 1

Model R2 (SD) DAIC

ESSsubj 0.4066 (0.2321)
ESSobj 0.3587 (0.2272) 525.5
OTBsubj 0.1417 (0.0667) 2,943
OTBobj 0.1208 (0.0540) 3,038

DAIC are summed AIC values relative to the winning model.
AIC, Akaike information criterion; ESS, error-state-space models;
OTB, one-trial-back models; SD, standard deviation. Note: t tests
are compared with target error model R2, unless stated otherwise.
df, degrees of freedom, SD, standard deviation.
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confidence versus the ESSobj model (Table 1). All model
comparisons were robust, with AIC differences relative to
the best-fitting model all exceeding 500.

Although the results of experiment 1 clearly favored the
ESSsubj model, some limitations remained. First, because the
rotation was of a single value (30�) and was fixed throughout
the adaptation phase, the task was relatively easy. Thus, it
was important to test if our modeling results generalized to a
more complex learning environment, one where both errors
and confidence reports would be more variable. Moreover,
because of the nature of the task in experiment 1, both learn-
ing curves and confidence reports monotonically increased
together; a more variable environment would thus also help
us rule out potential coincidental similarities in autocorrela-
tion structure between our winning model and subjects’
learning curves as the key factor. To that end, in experiment
2, we implemented a pseudorandomly varying perturbation
schedule. This allowed us to both control for the aforemen-
tioned limitations, while also testing a novel question we
formed a priori—are the dynamics of metacognitive confi-
dence judgments during sensorimotor learning affected by
environmental uncertainty? Following the logic of control
models like the Kalman filter, we expected a shallower his-
tory of errors to be integrated into the confidence computa-
tions, exemplified by the a parameter of our models (Eq. 3).

Experiment 2

Experiment 2 involved perturbations that fluctuated every
few trials (i.e., the perturbation changed size and direction
every 4 or 8 trials, see Fig. 3A and METHODS). This allowed us
to perform a more strict test of our modeling approach, and
to examine if and how environmental uncertainty affected
subjective confidence reports. Specifically, we predicted that
the ESSsubj model would best account for subjective confi-
dence ratings in this context, replicating experiment 1.
Moreover, we also hypothesized that while the fundamental
process of confidence ratings would remain the same (i.e.,
the ESSsubj would again best explain behavior), the learning
rate parameter of that model would increase in response to
the increase in environmental uncertainty such that it would
incorporate a more recency-biased history of errors (12).

Despite the more volatile nature of the perturbation
schedule, participants were still able to alter their reach
directions to account for the rotations (Fig. 3A). Excluding
the transition trials where the rotation abruptly changes,
subjects’ average cursor error in the last two perturbation
blocks was only 6.3� (SD: 6.5�). A GLM using block number,
trial position within a block, and their interaction to predict
percent compensation for each subject found that trial posi-
tion within a block and the interaction term both signifi-
cantly predicted percent compensation. Specifically, later
trials within a block elicited greater compensation for the
perturbation [b ¼ 0.08 (SD: 0.06), t(19) ¼ 6.28, P ¼ 4.9 �
10�6], indicating learning within a block. In addition, the
interaction term revealed that participants exhibited faster
learning in later blocks [b ¼ 0.002 (SD: 0.003), t(19) ¼ 3.03,
P¼ 0.007], supporting the presence of “meta-learning.”

As in experiment 1, confidence remained relatively sta-
ble during the unperturbed baseline but sharply decreased
after the onset of the first perturbation (Fig. 3B). Confidence
also tended to sharply decrease at the start of each new per-
turbation. Throughout the experiment, some four-trial zero-
rotation blocks were introduced, and these blocks tended to
coincide with high confidence reports (Fig. 3B).

Once again, the ESSsubj model best predicted confidence
reports in this experiment [R2¼0.42±0.20 (means±SD)],
and the one-trial-backmodels were unable to account for the
large fluctuations in confidence reports and performed sig-
nificantly worse (Table 2). At the individual level, 18 out of
20 total subjects were better fit by the winning model versus
the second-best model (Fig. 3C). Both history (ESS) models
again tracked confidence reports more accurately than the
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Figure 3. Learning curves and model fitting for experiment
2 (n ¼ 20). A: learning curve. Participants adapted their
reaches (green) to account for the volatile perturbation
schedule (gray). B: mean confidence reports (black) and
winning model fit (blue; ESSSubj). C, top: AIC differences
between the best and second-best model are shown for
each subject (negative values represent better fits for the
winning model, ESSSubj). Bottom: summed AIC values rela-
tive to the summed AIC value for the winning model. All
error shading ¼ 1 SE. AIC, Akaike information criterion; ESS,
error-state-space models.

Table 2. Model fit R2 and DAIC values in experiment 2

Model R2 (SD) DAIC

ESSsubj 0.4207 (0.1974)
ESSobj 0.3539 (0.1848) 498.1
OTBsubj 0.2373 (0.1009) 1,984
OTBobj 0.1741 (0.0830) 2,316

DAIC are summed AIC values relative to the winning model.
AIC, Akaike information criterion; ESS, error-state-space models;
OTB, one-trial-back models; SD, standard deviation.
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other class of models (OTB). Thus, our model comparison
results closely replicated those of experiment 1 (and again
were robust; lowest AIC difference: 498). This further sug-
gests that metacognitive judgments of sensorimotor learning
incorporate a gradually changing history of (subjectively
scaled) errors. We do note that none of the four models were
able to fully capture the unusually high confidence ratings
seen during the zero-rotation blocks (see DISCUSSION). Finally,
the a parameter significantly increased when comparing
experiment 2 to experiment 1, in line with our hypothesis and
normative predictions concerning the effect of volatility on
learning rates [Exp. 2: 0.46 (SD: 0.23); Exp. 1: 1.91 (SD: 0.93);
Wilcoxon rank-sum test; Z ¼ 3.29, P ¼ 5.3 � 10�7] (12).
Additional analysis of model parameters is given in
ComparingModel Parameters across Experiments.

Experiment 3

The inclusion of an abrupt, large perturbation and the
requirement to aim promoted the use of explicit strategies in
experiment 1. The inclusion of multiple perturbations with dif-
ferent signs and magnitudes across repeating blocks in experi-
ment 2 constrains implicit learning and also promotes the use
of explicit strategies. As such, it is difficult for us to disentangle
whether confidence tracks improvements in the precision of
explicit aiming strategies, unmeasured proprioceptive errors
between the desired aim and the kinesthetic feedback from the
arm, or simply the observed visuomotor target errors, as we
assumed in our modeling. Thus, we performed two additional
experiments designed to further isolate implicit learning. If con-
fidence mainly tracks a generic target error signal, our model
should continue to perform well in this context; however, if
confidence mainly responds to changes in explicit motor learn-
ing, it should not. Experiment 3 sought to further reduce
explicit aiming strategies by imposing a noisy rotation whose

mean gradually increased over 45 trials to 15�, but which had
uniform noise of ±7.5� around the mean. This perturbation
schedule should generally render any explicit aiming strategies
redundant as participants would not be aware of the gradually
increasingmean perturbation (26–28) nor can predict the noise.
We hypothesized that the ESSsubj model would still be able to
explain fluctuations in confidence, supporting the assumption
that confidence tracks observed target errors.

Despite the randomness of the perturbation and the lack
of task-relevant explicit aiming strategies, participants im-
plicitly adapted well to the mean of the perturbation, reach-
ing an average of 85.62% (SD: 19.46%) compensation by the
last five trials of the adaptation phase (Fig. 4A). Significant
aftereffects were observed [retention ratio: 0.61 (SD: 0.80); t
(23) ¼ 3.66; P ¼ 0.001], consistent with the implicit nature of
adaptation to this perturbation. While participants’ adapta-
tion largely tracked the mean of the perturbation, their sub-
jective confidence reports slightly decreased over the course
of the experiment [Fig. 4B, top; confidence in the first 20 rat-
ing trials: 63.7 (SD: 17.3); confidence in the last 20 rating tri-
als: 51.0 (SD: 22.9); t(23) ¼ 2.34; P ¼ 0.03]. This decrease in
confidence appeared to reflect increased cursor errors [cur-
sor error in the first 20 trials: 2.80� (SD: 2.36�); cursor error in
the last 20 trials: 4.72� (SD: 2.15�); t(23)¼ 7.67, P¼ 8.7� 10�8].

As hypothesized, the ESSsubj model best-fit subjects’ confi-
dence ratings, achieving the lowest summed AIC and a mean
R2 of 0.33 (SD: 0.34) (Fig. 4C; Table 3). The ESSsubj model best
fit 11 out of 24 subjects. Of the 14 remaining subjects, 7 were
best fit by the ESSobj model, suggesting that the exponent pa-
rameter was largely unnecessary for these subjects. Overall, 18
out of 24 subjects were better fit by history (ESS) models, thus
replicating the finding in experiments 1 and 2 that the ESS
models best fit the data over the one-trial-back (OTB) models
and that confidence tracks a history of performance errors.
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Figure 4. Learning curves and model fitting for experiments 3 (n ¼ 25) and 4 (n ¼ 30). A: learning curve. Participants adapted their reaches (green) to
account for the volatile perturbation schedule (gray). B: mean confidence reports (black and gray) and winning model fit (dark and light blue; ESSSubj). C
and D, top: AIC differences between best and second-best model are shown for each subject (negative values represent better fits for the winning
model, ESSSubj). Bottom: summed AIC values relative to the summed AIC value for the winning model. All error shading ¼ 1 SE. AIC, Akaike information
criterion; ESS, error-state-space models.
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Experiment 4

Building on the findings of experiment 3, experiment 4
aimed to further disentangle the contributions of explicit
strategies and implicit learning processes to confidence judg-
ments. Here, by introducing a zero-mean perturbation, we
eliminated any correlation of confidence with steady
improvements in motor performance; however, by applying
a noisy distribution of perturbations, we further constrained
the use of explicit aiming strategies, providing us a context
in which to further validate our model predictions.

Given that the perturbation was randomly sampled from a
uniform distribution ranging from �7.5� to þ 7.5�, partici-
pants could not predict the rotation on any given trial.
However, the resultant cursor errors would produce a small
degree of single-trial implicit learning. On average, partici-
pants adjusted their hand angle by 1.58� (SD: 1.47�) in the op-
posite direction of the cursor error on the subsequent trial.
This single-trial learning was significantly different from
zero [t(26) ¼ 5.56, 7.8 � 10�6), indicating some degree of
implicit adaptation. Confidence ratings remained largely sta-
ble throughout the experiment [Fig. 4B, bottom; confidence
in the first 20 perturbation trials: 50.2 (SD: 22.8); confidence
in the last 20 perturbation trials: 50.0 (SD: 25.2); t(26) ¼ 0.05;
P ¼ 0.96], as did average performance [Fig. 4A; cursor error
magnitude in the first 20 perturbation trials: 4.04� (SD:
1.33�); cursor error magnitude in the last 20 perturbation tri-
als: 4.24� (SD: 0.98�); t(26)¼ �0.83, P¼ 0.41].

As in experiment 3, the ESSsubj model again gave the best fit
to subjects’ confidence ratings, achieving the lowest summed
AIC and a mean R2 of 0.24 (SD: 0.21) (Fig. 4D; Table 4). The
ESSsubj model best fit 13 out of 27 participants. Of the remain-
ing 14, 8 participants were best fit by the ESSobj model, as the
exponent parameter for these participants was close to 1
(and thus less important). Overall, 77.8% of participants (21/
27) were better fit by an error history (ESS) model, rather
than a one-trial-back (OTB) model. Taken together, the
results of experiments 3 and 4 suggest that confidence dur-
ing motor learning reflects a form of performance moni-
toring that tracks performance error history regardless of
whether learning is driven principally by explicit changes
in movement strategy or implicit adaptation.

Comparing Model Parameters across Experiments

Although the variance in confidence reports was best
explained in all experiments by the subjective-error his-
tory (ESSsubj) model, parameter values in each experiment
were not expected to be the same. In fact, given the differ-
ences in perturbation schedules across experiments, two
key parameter value differences were hypothesized. First,

as discussed above, it has been observed in other fields
that greater environmental volatility results in higher
learning rates (12, 30). Thus, we predicted that experiment
2 should have a higher learning rate (a) compared with
other experiments, as the perturbation abruptly changed
several times throughout the task. Although the degree of
perturbation noise in experiments 3 and 4 was also high,
we do not predict a large learning rate per se as the noise
was consistent throughout the task, drawn from a uniform
distribution, in contrast to the sudden changes of pertur-
bations applied in experiment 2.
We also predicted that subjective error computations

would be sensitive to the general error distribution
induced by the task. Since experiments 2–4 exposed par-
ticipants to much larger errors on average than experi-
ment 1, we would expect smaller exponent c values,
reflecting the hypothesis that participants would dis-
count frequent large errors. Conversely, in experiment 1,
since most errors were small, after the initial onset of the
perturbation, we would expect a larger exponent c value,
reflecting increased salience of small errors. An inherent
trade-off in our models also predicts that smaller expo-
nent c values induce increased sensitivity parameter g
values. Consistent with this trade-off and the above pre-
diction regarding c values, experiment 1 would be pre-
dicted to have the smallest sensitivity parameter g.

Due to the large number of comparisons conducted while
investigating parameter differences across experiments, we
controlled type 1 error rates by adjusting P values using the
false discovery rate procedure (31). Learning rates were sig-
nificantly higher in experiment 2 relative to experiments 1
and 3 (Fig. 5D; Wilcoxon rank-sum test; Exp. 1: Z ¼ 3.29,
Padj¼0.006; Exp. 3: Z ¼ 2.65, Padj¼0.02), largely in line with
our hypothesis. However, there was no significant difference
in learning rates between experiments 2 and 4 (Wilcoxon
rank-sum test; Z¼ 1.41; Padj¼0.23).

Our second hypothesized parameter difference across
experiments was that experiment 1 would show a higher
exponent c and consequently a lower sensitivity g relative to
other experiments where errors tended to be larger.
Experiment 1 had a significantly lower sensitivity g com-
pared with all three other experiments (Fig. 5C; Wilcoxon
rank-sum test; Exp. 2: Z ¼ �4.40, Padj¼ 1.3 � 10�4; Exp. 3:
Z ¼ �3.04, Padj¼0.01; Exp. 4: Z ¼ �2.63, Padj¼0.02).
Experiment 1 also showed a higher exponent c compared
with experiments 2 and 4 (Fig. 5B; Wilcoxon rank-sum test;
Exp. 2: Z ¼ 5.01, Padj¼ 1.3 � 10�5; Exp. 4: Z ¼ 2.86,
Padj¼0.01), but the comparison with experiment 3 did not
survive corrections (Wilcoxon rank-sum test, Z ¼ 2.12,
Padj¼0.07). These findings are mostly consistent with our

Table 3. Model fit R2 and DAIC values in experiment 3

Model R2 (SD) DAIC

ESSsubj 0.3327 (0.3405)
ESSobj 0.3047 (0.3385) 240
OTBsubj 0.0704 (0.0997) 2,271
OTBobj 0.0586 (0.0825) 2,284

DAIC are summed AIC values relative to the winning model.
AIC, Akaike information criterion; ESS, error-state-space models;
OTB, one-trial-back models; SD, standard deviation.

Table 4. Model fit R2 and DAIC values in experiment 4

Model R2 (SD) DAIC

ESSsubj 0.2316 (0.2055)
ESSobj 0.2204 (0.2091) 126
OTBsubj 0.1029 (0.1339) 764
OTBobj 0.0883 (0.1227) 794

DAIC are summed AIC values relative to the winning model.
AIC, Akaike information criterion; ESS, error-state-space models;
OTB, one-trial-back models; SD, standard deviation.
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hypothesis that in experiments 2–4, where errors tended to
be larger, participants discounted larger errors to a greater
degree than they did in experiment 1, where errors tended to
be smaller.

Although we did not have a priori predictions about the
maximum confidence offset parameter, analyses revealed
that experiment 4 had a significantly lower offset than
experiments 1 and 2 (Fig. 5A; Wilcoxon rank-sum test; Exp. 1:
Z ¼ �3.14, Padj¼0.008; Exp. 2: Z ¼ �3.37, Padj¼0.006) but
the comparison with experiment 3 did not survive correc-
tions (Exp. 3: Z ¼ �2.27, Padj¼0.055). The maximum confi-
dence parameter reflects the theoretical maximum confidence
a participant would rate if they had no cursor error on any
trial. If participants are using the full range of the scale, this
parameter should be close to maximal (i.e., 100). However,
in experiment 4, the mean parameter value was 66 (SD: 24).
Participants in experiment 4 largely had very low confidence
ratings and rarely rated highly on the scale, likely due to the
unpredictable noisy perturbation, so it perhaps is reasonable
that their maximum confidence parameter would be lower
than the other experiments. Taken together, our between-
experiment parameter results (Fig. 5) suggest that subjects
adapted the dynamic range and timescale of error integra-
tion of their confidence computations in a manner that
adapted to the statistics of the environment.

Does Confidence Affect Motor Learning?

Thus far, our findings have examined the effect of errors
on participants’ subjective confidence. Although it may seem
intuitive that confidence ratings incorporate information
about recent motor performance, confidence judgments may

also modulate changes in motor behavior, rendering confi-
dence ratings as more than just an epiphenomenal “read-
out” of task error. Indeed, confidence in our task reflects a
form of subjective (un)certainty in one’s actions, which
according to Bayesian logic may influence how someone
behaves (32, 33). Does having high or low confidence predict
anything about participants’ ability to adapt to errors? In
other words, is there a bidirectional relationship between
confidence andmotor learning?

To address this, we explored whether confidence on trial t
could predict changes inmotor behavior on trial t þ 1, above
and beyond the changes predicted by error alone. We fit gen-
eralized linear models (GLMs) to the kinematic data on each
trial (see METHODS for details). The first GLM acted as a con-
trol, only attempting to predict changes in hand angle using
TE on trial t, and the current trial in the rotation block (or
mini-block for experiment 2) as control predictor. The second
GLM added the confidence rating on trial t as an additional
predictor, as well as the interaction between confidence rating
and TE.

Intriguingly, in both experiments 1 and 2 adding confi-
dence to the regression model significantly improved the
model’s ability to predict trial-by-trial changes in motor
behavior, both when using changes in explicit aim or raw
hand angle as the predicted variable (see METHODS). In
experiment 1, the confidencemodel fit to changes in aim out-
performed the control (i.e., without confidence) model by an
average of 30.3 AIC points (SD: 29.6; Wilcoxon sign-rank test
on differences in AIC values across the sample, Z ¼ �3.46,
P¼ 5.4� 10�4). Regression coefficients for the confidence term
did not significantly differ from zero (Z ¼ �1.28, P ¼ 0.20).

A B

C D

Figure 5. Parameter comparison across experiments. Green shaded regions reflect the distribution of participant parameter values. White dots indicate
median parameter values and gray bars the interquartile range (IQR) between the first and third quartiles. Median and IQR values are included above
each plot and Wilcoxon-adjusted P values are provided in situ. Whiskers extend to 1.5 times the IQR. A: maximum confidence offset parameters. B: sub-
jective scaling of errors via an exponential free parameter. C: the sensitivity parameter. D: confidence model learning rates.
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Similar results were seen for the confidence model used to pre-
dict changes in hand angle (whichwe note were correlatedwith
aim changed). Thismodel also outperformed the controlmodel,
by an average of 21.7 AIC points (SD: 26.4; Wilcoxon sign-rank
test, Z¼ �3.20, P¼ 0.001). Regression coefficients for the confi-
dence term again did not differ from zero (Z ¼ 0.68, P ¼ 0.41).
In experiment 2, confidence did significantly predict changes in
aim, improving the model fit by an average of 19.1 AIC points
(SD: 19.9; Wilcoxon sign-rank test, Z ¼ �3.55, P ¼ 3.89 � 10�4).
Unlike in experiment 1, the regression coefficient for the confi-
dence term was significantly different from zero (means: �1.82;
SD: 1.86; Z¼ �3.36, P¼ 3.9� 10�4). This suggests that changes
in aim following a given error were larger if the error occurred
on a trial where the participant’s confidence was low. The
results were similar when modeling changes in hand angle,
which we note were highly correlated with changes in aim
[DAIC ¼ �22.0 (SD: 26.8), Wilcoxon sign-rank test, Z ¼ �3.47,
P ¼ 5.2 � 10�4]. The regression coefficient for the confidence
term used to predict changes in hand angle was again signifi-
cantly less than zero (means: �1.41; SD: 2.32, Z ¼ �2.28, P ¼
0.02). This again suggests that changes in hand angle in
response to a given error were larger if the error occurred on a
low-confidence trial. Speculatively, this may be consistent with
a Bayesian account—if you have a highly “certain” prior that
youwill performwell on a trial, sensory errormay be somewhat
discounted, potentially leading to a smaller change in response
to an observed sensory error.

In experiments 3 and 4, where explicit aiming strategies
were largely absent, confidence no longer significantly
improved model fits to changes in motor behavior. In fact,
in both experiments, the confidence regression model
performed significantly worse than models using error
alone due to the AIC penalty for additional parameters
(Wilcoxon sign-rank test; Exp. 3: Z ¼ 2.60, P ¼ 0.009; Exp.
4: Z ¼ 4.06, P ¼ 4.9 � 10�5, both in favor of the control
model). Thus, in the absence of a task-relevant explicit
component of motor learning, it appears that subjective
confidence (certainty) in one’s movements no longer modu-
lates adaptation to errors. This suggests that implicit motor
adaptation may be largely impervious to metacognitive
judgments of performance. On the other hand, the regres-
sion analysis in experiments 1 and 2 indicate that confi-
dence may modulate motor learning through changes in
volitional movement strategies.

DISCUSSION
Here, we examined the relationship between subjective

confidence judgments and motor errors in the context of
sensorimotor adaptation. We investigated this relationship
via four sensorimotor learning experiments that differed
with respect to environmental volatility and the perturba-
tion applied, each eliciting varying degrees of explicit or
implicit motor learning. We constructed computational
models with the goal of predicting subjective confidence
reports on each trial based on people’s error histories. We
specified a set of models where trial-by-trial subjective confi-
dence tracked only the current learning state (i.e., the most
recent performance error), and another set of models where
confidence judgments are approximated by a simple linear

dynamic system that tracks a recency-weighted history of
errorsmade during learning.

In all four experiments, the ESSsubj model, an error history
model that also scales performance errors using a subjective
cost function, best accounted for subjects’ confidence data.
In experiment 1, ESSsubj model was best able to account for
the confidence data in the context of a fixed, abrupt pertur-
bation schedule. In experiment 2, subjects learned in a vola-
tile context, and the ESSsubj model was again best able to
account for the large fluctuations in confidence reports we
observed. In experiments 3 and 4, where the perturbation
was small and the perturbation schedule was largely random
and thus elicited primarily implicit adaptation, the error his-
tory models once again best fit the confidence data. Taken
together, these findings demonstrate that confidence com-
putations during sensorimotor adaptation approximate a
running average of recent (subjectively scaled) performance
errors. To wit, these findings suggest that when people make
metacognitive judgments of their own state of sensorimotor
learning, they incorporate a recent history of performance
errors rather than just taking a snapshot of their current per-
formance state.

Notably, comparing model parameters between experi-
ments provided additional key insights into the dynamics of
metacognitive judgments of performance during sensorimo-
tor adaptation, showing that confidence computations adapt
to the statistics of the learning environment. The subjective
costs of errors, reflected in the exponent term of our model,
varied in accordance with the range of errors experienced by
participants in all four experiments. Importantly, the subjec-
tive error cost function across experiments agrees with prior
observations that small errors are exaggerated and large
errors are discounted (26). Moreover, environmental volatil-
ity affected confidence computations. In experiment 2, the
perturbation abruptly changed across short mini-blocks,
resulting in a highly volatile context and a large contribution
from explicit learning processes. In line with work in other
fields (13), this prompted a higher learning rate in the confi-
dence model fit to experiment 2. Future studies that para-
metrically alter aspects of the learning environment [e.g.,
consistency and variability, (39)] and measure their effects
on metacognitive judgments could be useful for developing
more detailed models of confidence computations during
motor learning.

Despite all four experiments eliciting varying degrees of
explicit and implicit motor learning, the winning model was
consistent across these contexts. In experiments 1 and 2,
learning was dominated by explicit strategies to counter the
rotation. On the other hand, although the presence of
explicit strategies cannot be entirely ruled out in the context
of an online task, in experiments 3 and 4, explicit strategies
were rendered redundant and implicit learning dominated.
Nonetheless, confidence judgments tracked the recent his-
tory of task errors and were generally sensitive to subjective
versus objective error scalings. This suggests to us that confi-
dence does not merely “read-out” the progress of explicit or
implicit processes, but rather reflects the active monitoring
of a history of recently observed task performance errors.
Task errors emerge as an interface between implicit and
explicit processes, indicating the adequacy of the combined
effort of these processes for achieving performance goals
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(34). This error signal, we propose, is most informative for
our subjective formation of confidence in our motor
performance.

What are the psychological mechanisms that track the
error-state used for metacognitive judgments? Although our
models are straightforward and principally descriptive, they
do constrain the time scale in which error signals are inte-
grated, hinting at a role for short-term memory in the pro-
cess of subjective confidence formation. We speculate that
working memory is likely important in the formation of con-
fidence judgments during motor learning (27, 28). That is,
participants may track the quality of their performance by
storing recent outcomes in working memory and integrating
them into an estimate of the “state” of their performance. If
this is correct, one prediction is that disrupting working
memory may alter the relationship between confidence and
recent errors. Future studies, perhaps using dual tasks that
tax working memory, could test this prediction.

In addition to being able to predict confidence judgments
given the history of performance, an exploratory analysis of
our data provided some evidence that subjective confidence
can modulate changes in motor behavior. Namely, partici-
pants’ degree of confidence in their actions immediately pre-
ceding an error can predict the degree to which they adjust
their actions in response to those errors. We note that we
only observed this relationship in experiments 1 and 2, where
explicit learning dominated, but not in experiments 3 and 4,
where learning was largely implicit. Moreover, in experiment
2, we observed a consistent relationship between confidence
and learning form error, where lower confidence appeared to
precede greater sensitivity to errors. It is possible that this
echoes a Bayesian integration process, where certainty in
one’s actions going into a trial reflects a “prior” on the
expected error, sensory error feedback represents an obser-
vation of new data, and the stronger the prior (i.e., the higher
the confidence/lower the uncertainty), the less adaptation to
that error. Although we only observed this intriguing effect
in Experiment 2, future studies that control sensory uncer-
tainty could help usmore directly test this idea.

We note several limitations in our study. First, motor per-
turbation tasks should not be conflated with true skill learn-
ing (20); measuring confidence judgments in more complex
motor skill learning tasks will be essential for asking if our
models generalize. Second, many models of confidence take
a Bayesian approach (11), explicitly modeling sensory uncer-
tainty as a key component of confidence. We took a more de-
scriptive approach here by focusing on the overall dynamics
of confidence judgments during visuomotor learning, and by
focusing on confidence in one’s performance, not sensory
perception. Future studies could also incorporate uncer-
tainty in other forms (e.g., sensory feedback, increased
motor noise, etc.) to further develop our models in a more
normative framework. Third, participants in experiment 2
exhibited higher confidence during the zero-rotation blocks,
where feedback was similar to the baseline phase of the
experiment and was completely unperturbed. One possible
explanation for this behavior is that participants may have
been able to compare the performance of the cursor to their
intended movement, signaling a change in context reminis-
cent of the veridical baseline experience in earlier trials. This
would explain why confidence on the zero-rotation blocks

appears to return to baseline levels, as participants already
have experience with zero-rotation trials. Importantly, an
error signal based on the discrepancy between the aimed
movement and cursor is insufficient to explain the variation
in confidence observed in, for example, experiment 3, where
participants adapt implicitly. Instead, task errors (the
observed error of the cursor relative to the center of the tar-
get) are a better predictor of confidence across all of our
experiments. Thus, confidence in this context quickly
returned to baseline levels on these trials. Our current model
cannot account for this potential long-term memory effect
which may involve familiarity with previous baseline
phases, the detection of large perturbations, and contextual
shifts.

Moreover, it is likely the case that confidence is related to
“agency” (35–37). How is confidence influenced by errors
that are perceived to be a consequence of one’s own motor
variability versus the environment? This could be another
important topic of further study. Finally, our model was less
able to capture variance in experiments 3 and 4 versus
experiments 1 and 2; in the former, the perturbation schedule
was random and involved smaller errors. This may again
relate to judgments about agency and the source of errors,
though at present we can only speculate as such.

The prospect that higher-level metacognitive judgments
accurately track lower-level sensorimotor variables (e.g., vis-
ual error magnitudes) compels the search for underlying
neural correlates. In the context of sensorimotor learning,
confidence can be defined as a higher-order variable that
corresponds to the uncertainty that underpins the learning
process (13, 14). Multiple neural regions capable of represent-
ing sensory uncertainty have been proposed, including the
orbitofrontal cortex (OFC) (38, 39), midbrain (40), anterior
cingulate cortex (ACC) (41), insula (42, 43), and prefrontal
cortex (PFC) (44, 45). In terms of representations of confi-
dence, activity in the rostrolateral and dorsolateral PFC
(rlPFC/DLPFC) is purported to be central to the processing of
explicit confidence judgments in decision-making (46–49).
It may be that some of these regions, in addition to areas
involved in working memory, could show functional correla-
tions to the variables we have modeled here. That is, our
model (or similar ones) could be used in attempts to track or
disrupt neural correlates of metacognitive variables during
motor learning—such as the estimated error state (Eq. 3) or
metacognitive prediction errors (Eq. 4)—using techniques
like fMRI and TMS.

Understanding the potential role of metacognition in
tracking motor learning progress, and perhaps exerting an
influence on the learning process itself, has several potential
practical implications. In clinical contexts, understanding
the factors that promote increased confidence in a patient’s
motor ability may help predict their persistence in therapy
as well as help speed up their performance improvements
through treatment. Moreover, there is a rather large body of
work on metacognition in childhood education (50–52); if,
say, a child is struggling with a motor skill (e.g., handwrit-
ing), understanding how their recent progress influences
their metacognitive conceptions can be useful knowledge.
The same principle can be applied to inform howmetacogni-
tion plays a role in professional sports, and perhaps inform
future coaching approaches.
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In conclusion, here we show that a simple Markovian
learning rule was able to capture people’s confidence rat-
ings as they performed skilled reaches and adapted those
movements in response to errors. Our model showed that
people’s metacognitive judgment of their motor perform-
ance appeared to incorporate a recency-weighted history
of subjectively scaled sensorimotor errors. This recency-
weighted model was robust to different learning contexts
that elicited varying degrees of implicit or explicit learning.
The specific statistics of the learning environment, including
volatility of the perturbation and the average magnitude of
errors, lawfully altered how errors were integrated intometa-
cognitive judgments of confidence. Furthermore, we demon-
strate that metacognitive confidence computations may
exert an influence on explicit motor compensation strategies
in response to errors. Our findings provide a foundation for
future studies to investigate sensorimotor confidence during
more real-world learning tasks and to localize its correlates
in the brain.
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