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Here we review recent psychophysical, neuropsycho-
logical, and neurophysiological evidence pertaining to 
how explicit selection processes are recruited through-
out motor learning and how these processes may or may 
not interact with traditional implicit learning systems. 
Much of this evidence has come from sensorimotor 
adaptation tasks, which involve a perturbed relation-
ship between motor commands and sensory feedback.

Although cognitive strategies were once central to 
theories of sensorimotor skill acquisition (Fitts & Pos-
ner, 1967), their role in motor learning has largely been 
overlooked in recent years. As Stanley and Krakauer 
(2013) have pointed out, one likely reason may be the 
seminal findings from patient H. M., which led to the 
distinction between explicit (declarative) and implicit 
(procedural) memory systems (Milner, Corkin, & Teu-
ber, 1968). H. M. lacked the neural structures that sup-
port explicit memory formation, although he could 
apparently learn a new sensorimotor skill (e.g., mirror 
drawing). Thus, it would appear that explicit processes 
are unnecessary to sensorimotor learning. In the fol-
lowing sections, we hope to modify this interpretation.

The Sensorimotor Learning Curve

A number of behavioral tasks have been developed to 
study motor adaptation, including prism adaptation 
(Martin et al., 1996b), force field learning (Shadmehr 
& Mussa-Ivaldi, 1994), and visuomotor rotation 
(Krakauer et al., 2000; figure 46.1A). Regardless of the 
particular type of task, they all show similar learning 
curves (figure 46.1B) and have primarily been used as 
model tasks to study supervised, implicit error-based 
learning.

The canonical learning curve proceeds as follows 
(figure 46.1A, B): After a baseline phase, participants 

abstract  Motor learning is traditionally characterized as 
a function of procedural memory, distinct from episodic, seman-
tic, and other forms of memory. Motor adaptation, in partic
ular, describes the process of maintaining the calibration 
between motor commands and their desired sensory outcomes 
and has been characterized as a purely implicit, error-based 
learning process. Increasingly, however, evidence supports 
the idea that this common conception of motor adaptation is 
just one piece of the puzzle and should be expanded. Here 
we review recent evidence showing that when humans adapt 
visuomotor behaviors, they rely on multiple learning pro
cesses, with deliberate action selection helping to bootstrap 
the learning curve and flexibly maintain performance. We 
discuss the implications of these discoveries in short- and 
long-term motor learning.

Motor learning is often discussed in terms of the opti-
mization of motor execution—that is, the specification 
of movement parameters that minimize noise and max-
imize accuracy, or the “how to do it” aspects of move-
ment. This conception is the foundation of sensorimotor 
adaptation tasks, which are considered models for study-
ing how the execution of actions is calibrated to align 
with desired goal states. But adaptive motor behavior 
needs to contend with another optimization problem: 
the intelligent selection of rewarding, attainable goals 
in the first place, or the “what to do” aspect of move-
ment. This selection process is fundamental to the flex-
ibility that is characteristic of a learned motor skill, 
though it is not known if or how it interacts with the 
calibration process. Recent research suggests that even 
in cases of learning very simple motor tasks, humans 
apply controlled, often explicit, reasoning processes to 
rapidly and flexibly select and adjust actions to improve 
motor performance. In this light, behavior in sensorimo-
tor adaptation tasks involves improvements in action 
selection processes in addition to improvements in cali-
bration processes.
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Shadmehr, 2000). Identifying the underlying processes 
and neural systems that give rise to this learning func-
tion has been a primary focus of research in the motor 
control field.

Error-Based Learning, Reinforcement Learning, 
and Use-Dependent Plasticity in Adaptation Tasks

One demonstration of the various processes under
lying motor adaptation came from Huang et al. (2011), 
who dissociated multiple factors that appeared to drive 
different aspects of learning (figure  46.1B): sensory 
prediction error (e.g., a visual cursor’s deviation from a 
movement direction), task success (e.g., a cursor hitting 
a target or not), and the direction of movement (e.g., 

experience large errors upon the introduction of a per-
turbation. Over time they adapt to these errors in a 
manner resembling a power function, eventually 
approaching a learning asymptote. Finally, in a wash-
out phase, even though the perturbation is removed, 
adapted movements do not rapidly disappear—
participants often show pronounced aftereffects, which 
are unlearned at a comparable rate to initial learning. 
Aftereffects are the gold standard of implicit adapta-
tion, reflecting a new association between a goal (e.g., 
hitting a target at 90°) and a movement command (e.g., 
reaching at an angle of 120° instead of 90°). The dynam-
ics of this learning function can be approximated by a 
Markovian state-space model of adaptation, where an 
internal state is updated trial by trial (Thoroughman & 

Figure 46.1  A, Standard adaptation task procedure (visuo-
motor rotation task is shown). Participants attempt to land a 
cursor (red circle) on a target (green circle), with vision of their 
limb occluded. B, Canonical adaptation learning curve over 
the baseline (B), perturbation (P), and washout (WO) phases 
depicted in panel (A), with a schematic of multiple learning 
processes making up the learning curve. Inspired by Huang 

et al. (2011) and Izawa and Shadmehr (2011). Learning pro
cesses rely on distinct teaching signals. C, Schematic of 
explicit report method used by Taylor, Krakauer, and Ivry 
(2014) and others, which separates explicit and implicit 
learning. D, Explicit and implicit learning contributions 
revealed by the reporting method depicted in (C). Adapted 
with permission from Taylor, Krakauer, and Ivry (2014).
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cerebellum, prefrontal cortex, premotor and primary 
motor cortices, parietal cortex, and basal ganglia, are 
active during sensorimotor adaptation tasks (Krakauer 
et  al., 2004; Seidler, Noll, & Chintalapati, 2006). As 
mentioned above, another process involved in senso-
rimotor learning is reward-based reinforcement: This 
process is thought to be homologous to standard model-
free reinforcement learning (Daw et  al., 2011), which 
involves reinforcing actions that directly lead to reward 
(e.g., hitting a target). This learning process is dubbed 
model-free because it does not require planning to future 
reward states but merely associates a running average 
of rewards with certain actions (Sutton & Barto, 1998).

This type of learning is likely reliant on dopamine-
dependent reward prediction errors, which are com-
puted in the midbrain and broadcast to a wide network 
that includes the basal ganglia and frontal cortex 
(Schultz, 1998). Patients with damage to the basal gan-
glia generally show a normal ability to adapt to sensory 
prediction errors (Smith & Shadmehr, 2005; Weiner, 
Hallett, & Funkenstein, 1983) but show diminished 
abilities, relative to controls, to rapidly relearn a pertur-
bation days after initial training (Marinelli et al., 2009), 
suggesting a role for reinforcement learning in savings 
and relearning (Huang et al., 2011).

A third procedural process, use-dependent learning, 
is characterized as an “attractor” toward movements 
that are repeated (figure 46.1B; Huang et al., 2011): As 
a particular movement is repeated, similar movement 
commands are “pulled” toward the repeated direction 
(Verstynen & Sabes, 2011). This bias is primarily thought 
to result from plastic changes in primary motor cortex 
(Mawase et al., 2017), and the stimulation of motor cor-
tex with transcranial magnetic stimulation (TMS) has 
been shown to enhance the effects of use-dependent 
learning (Bütefisch et al., 2004). This form of learning 
is essentially an acquired bias, described as a form of 
unsupervised learning (Doya, 2000).

We have just outlined three learning processes that 
are generally put under the “procedural” umbrella. 
Given the classic results of patient H.M. and the con-
comitant declarative/procedural divide, it has often 
been assumed that procedural processes fully account 
for motor learning. Do any nonprocedural processes 
subserve motor learning?

Deliberate Action Selection in  
Sensorimotor Adaptation

Various lines of evidence from prism adaptation stud-
ies suggest that strategic control plays a role in the rapid 
reduction of performance errors (Redding & Wallace, 
1996). For instance, in a prism adaptation study by 

the path of the hand). The authors were able to dissoci-
ate three distinct forms of learning that appeared to 
respond, respectively, to these different signals: (1) 
error-based adaptation, which responds to discrepan-
cies between movement and feedback, (2) reinforcement 
learning, which reinforces movements that result in 
task success (i.e., reward), and (3) use-dependent learn-
ing, which merely reinforces repeated movement direc-
tions (figure 46.1B).

In another study, Izawa and Shadmehr (2011) showed 
how sensory prediction errors (the difference between 
expected and observed sensory feedback) and reward 
prediction errors (the difference between expected and 
observed reward feedback) drive different learning pro
cesses: the former was linked to a proprioceptive illu-
sion, where at the end of learning participants misjudge 
the position of their hand in space. Moreover, while 
error-based learning led to broad generalization of the 
learned mapping to novel target locations, learning with 
reward prediction errors generalized more narrowly 
(and did not cause sensory recalibration). Taken 
together, these two studies showed how learning in a 
sensorimotor adaptation task is clearly multifaceted 
(figure 46.1B).

The cerebellum has been singled out as the primary 
locus of error-based recalibration via sensory predic-
tion error (Tseng et al., 2007). The cerebellum is known 
to be vital for the learning and execution of coordi-
nated movements (Thach, Goodkin, & Keating, 1992), 
and this learning is thought to rely on plasticity at the 
parallel fiber-Purkinje cell synapse (Albus, 1971; Marr, 
1969): Parallel fibers carry a state representation that 
includes sensory context and current outgoing motor 
commands (e.g., efference copy) to the cerebellar cor-
tex, while the second primary input to the Purkinje cells, 
the climbing fibers, provide a teaching signal when an 
unexpected sensory event occurs (i.e., a sensory predic-
tion error). Long-term depression at the parallel fiber-
Purkinje cell synapse induced by these teaching signals 
is thought to eventually lead to adapted motor behav
iors that reduce error over time (Ito, 2006).

Consistent with a role for the cerebellum in error-
based reach adaptation, cerebellar damage in humans 
leads to attenuated aftereffects in prism adaptation 
(Martin et al., 1996a; Weiner, Hallett, & Funkenstein, 
1983). Similarly, patients with cerebellar damage show 
significant deficits in force field learning (Izawa, 
Criscimagna-Hemminger, & Shadmehr, 2012) and 
visuomotor rotation adaptation (Morehead et al., 2017; 
Tseng et al., 2007).

Positron emission topography (PET) and functional 
magnetic resonance imaging (fMRI) studies have 
revealed that a wide network of areas, including the 
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task causes decreased trial-by-trial adaptation to force 
perturbations (Taylor & Thoroughman, 2007), and this 
decrement is mediated by the difficulty of the second-
ary task (Taylor & Thoroughman, 2008). Awareness and 
instruction about force perturbations correlates with 
improved force adaptation (Hwang, Smith, & Shad-
mehr, 2006), and the fast process of force field learning 
appears to require access to declarative memory 
resources (Keisler & Shadmehr, 2010). Lastly, partici-
pants can verbally report using explicit strategies dur-
ing force field adaptation, and the time course of these 
reports closely matches that seen in rotation tasks 
(McDougle, Bond, & Taylor, 2015).

The specific mechanisms driving explicit motor-
learning processes are still being uncovered. Studies 
have shown that working-memory capacity correlates 
with faster rotation learning (Anguera et al., 2010), and 
this effect has been linked specifically to the explicit 
learning process (Christou et  al., 2016). Eye gaze has 
been linked to explicit, but not implicit, learning (de 
Brouwer et  al., 2018; Rand & Rentsh, 2014). Strategic 
processes are linked to high movement preparation 
times (Haith, Huberdeau, & Krakauer, 2015), implying 
the recruitment of executive control. Consistent with 
these behavioral results, regions in prefrontal cortex 
and premotor cortex are most active in the early phases 
of sensorimotor learning (Krakauer et al., 2004), when 
explicit strategies are especially important. As learning 
progresses, activity follows a rostrocaudal shift from 
frontal to parietal and subcortical areas (Krakauer et al., 
2004), supporting a model where expensive computa-
tions may be slowly replaced by cached, overlearned 
responses (Haith & Krakauer, 2018).

The Interaction of Controlled and Automatic  
Motor Learning Processes

Given this multitude of learning processes, a funda-
mental open question concerns if and how they inter-
act. In one clever study, Mazzoni and Krakauer (2006) 
found that explicit and implicit processes appear to be 
relatively independent: In a rotation task, after partici-
pants experienced two standard rotation trials, the 
experimenters intervened and instructed participants 
to aim at a landmark distal to the target that fully coun-
teracted the rotation. Participants easily adopted this 
strategy and performed perfectly on the subsequent 
trial. However, after several trials participants’ move-
ments began to overcompensate and drift in the direc-
tion opposite the rotation, paradoxically making them 
less accurate.

This decidedly suboptimal behavior suggested that the 
error-based system was not responding to performance 

Martin et al. (1996b), one individual appeared to imme-
diately counteract the prism-induced shift after a single 
trial. Indeed, this individual reported using a deliberate 
“aiming” strategy. Upon explicit instruction to inhibit 
that strategy, the participant returned to an incremen-
tal learning function. How common are such deliberate 
strategies, and do they represent a fundamental aspect 
of motor learning?

Several studies in visuomotor rotation learning have 
provided indirect evidence for the concurrent opera-
tion of deliberate selection strategies and procedural 
learning. Benson et  al. (2011) showed that explicitly 
describing a rotational perturbation to participants 
speeds their learning. Heuer and Hegele (2008) used 
verbal posttests to show that participants could provide 
a relatively accurate explicit spatial description of the 
perturbation at the end of learning, suggesting that they 
could have leveraged this knowledge during learning.

To directly probe explicit learning, Taylor, Krakauer, 
and Ivry (2014) developed a task in which participants 
explicitly reported their deliberate aiming strategy 
before every trial (figure 46.1C). This was accomplished 
by tiling the learning environment with numbered 
landmarks that corresponded to possible aiming direc-
tions. Participants’ verbal reports could be converted to 
angular coordinates and subtracted from their actual 
movement directions on each trial, revealing the time 
course of implicit adaptation (figure  46.1D). Indeed, 
both explicit and implicit processes seemed to be active 
during learning, with the explicit selection of move-
ments rapidly bootstrapping the learning curve and 
implicit learning slowly calibrating movements over 
time. Critically, the implicit learning curve was contigu-
ous with observed aftereffects.

A follow-up study (McDougle, Bond, & Taylor, 2015) 
linked these two processes with a popular model of 
motor adaptation, the two-state model (Smith, Ghaziza-
deh, & Shadmehr, 2006). In this model, motor adapta-
tion is shown to be parsimoniously explained by the 
concurrent operation of two subcomponents with dif
ferent time constants: a “fast” process, which is fast and 
flexible, and a “slow” process, which is rigid and robust. 
Importantly, the assumption was that these two pro
cesses are qualitatively the same but quantitatively dif
ferent. Results from McDougle, Bond, and Taylor (2015), 
however, suggest that the two proposed subcomponents 
of adaptation represent two fundamentally different 
learning systems: error-based implicit learning, which 
appears to map on to the slow process, and explicit 
action selection, which appears to map on to the fast 
process.

Explicit learning likely functions in force field adap-
tation as well: adding a cognitive load through a dual 
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Furthermore, error-based learning is generally insensi-
tive to the magnitude of sensory prediction errors (Bond 
& Taylor, 2015; Morehead et al., 2017), though it shows 
limited sensitivity when errors are small (figure 46.2B, C; 
Kim et al., 2018).

Given the above limitations, it is suggested that error-
based cerebellar adaptation alone cannot fully solve 
the motor adaptation problem; rather, this process is 
best suited for retooling a well-trod internal model, or 
learned control policy. Consistent with this interpreta-
tion, Telgen, Parvin, and Diedrichsen (2014) further 
exposed the constraints on error-based learning using 
a mirror-reversed visuomotor transformation instead 
of a rotation. In mirror reversal, the solution to the task 
is not to adjust movements in the direction opposite the 
error direction but rather toward and then across the 
mirror axis (figure 46.2D). Here, a simple directionally 
sensitive algorithm would fail to counter the perturba-
tion and would actually make performance worse by 
adapting movements away from the mirror axis. 
Indeed, after extensive exposure to a mirror reversal, 

errors in the task (i.e., the discrepancy between the 
observed feedback and the target) but rather to a task-
irrelevant sensory prediction error (i.e., the discrepancy 
between the observed feedback and the predicted feed-
back, given the particular motor command). The rigidity 
of error-based learning was further highlighted by More-
head and colleagues (2017). They developed a task in 
which participants are instructed to aim directly at visual 
targets and ignore a consistent rotational error on every 
trial (figure 46.2A). Critically, the imposed error is of the 
same magnitude for every trial regardless of the partici-
pant’s direction of movement. This error-clamp paradigm 
produced a surprising result: adaptation proceeded even 
though the error had no relevance to the participant’s 
movement direction, and movements were adapted well 
past where they would need to go to fully compensate for 
the error (e.g., 25° of adaptation for a 7.5° rotational 
error). These results suggest that implicit adaptation 
occurs at a relatively fixed rate without regard to perfor
mance error, supporting the idea that the processes may 
not interact directly (Mazzoni & Krakauer, 2006). 

Figure  46.2  A, Clamped visual feedback used to isolate 
implicit learning processes. Adapted from Morehead et  al. 
(2017). The hand will adapt in response to a sensory predic-
tion, even though performance error is clamped. B, A small 
range of sensory prediction errors show scaling effects on the 
rate of learning, but (C) large sensory prediction errors do 
not scale learning rates. Adapted from Kim et al. (2018). D, 

Schematic of mirror task used in Telgen, Parvin, and Died-
richsen (2014). Standard adaptation causes an increase in 
error, suggesting that the task must be learned in other ways. 
E, Short-latency feedback responses to a displaced cursor do 
not show ideal adaptation even after prolonged exposure to 
a mirror perturbation. Adapted from Telgen, Parvin, and 
Diedrichsen (2014). (See color plate 51.)
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interference is observed in such tasks. These results are 
consistent with previous work (Hirashima & Nozaki, 
2012; Krakauer et al., 2006) showing that the context of 
learning a specific perturbation (e.g., the effector used 
during learning) may act as a cue. This earlier work led 
to a top-down cognitive interpretation for interference 
effects in visuomotor adaptation experiments (Krakauer, 
Ghez, & Ghilardi, 2005; Krakauer et al., 2006), an inter-
pretation that fits with the Sheahan, Franklin, and Wol-
pert (2016) results.

The neural interpretation is that the plan sets the 
initial conditions of a neural trajectory in the down-
stream dynamic system that directly controls motor out-
put: recent results using a brain-machine interface (BMI) 
in nonhuman primates revealed that training on a 
visuomotor rotation “covertly” (i.e., using the BMI but 
not eliciting actual arm movements) transfers to overt 
motor behavior on that same rotation and that this 
transfer is linked to corresponding motor cortical activ-
ity in the planning stages of both contexts (Vyas et al., 
2018). It is likely that in many settings the planning 
stage encompasses explicit selection of a desired action.

Explicit action selection can rapidly increase the like-
lihood of arriving at a rewarding state, allowing 
implicit, model-free reinforcement processes to then 
reinforce movements that maintain that state. But what 
if the environment changes? Learning environments 
are often not static, undergoing changes over time and 
contexts. One phenomenon in motor learning is sav-
ings, whereby an association that appears to have been 
extinguished is learned more rapidly upon a second 
exposure.

Huang et al. (2011) suggested that savings is attribut-
able to reinforcement learning, though whether this 
effect was driven by explicit strategizing or not was 
unclear. In a recent study, Morehead et al. (2015) showed 
that savings is attributable to explicit selection processes 
but not implicit processes. Moreover, participants can 
leverage contextual cues to “re-aim” and rapidly improve 
their performance when the environment changes 
(Morehead et  al., 2015), highlighting the contextual 
sensitivity of selection strategies. In another study Huber-
deau, Haith, and Krakauer (2015) showed that even very 
brief exposure to a rotation (e.g., as few as five trials) 
leads to faster relearning of that rotation the next day. 
This result is not parsimoniously explained by error-
based adaptation, which acts on much slower timescales 
(McDougle, Bond, & Taylor, 2015).

Haith, Huberdeau, and Krakauer (2015) used a 
forced-response time paradigm to dissociate explicit 
planning processes (which require ample preparation 
time) and implicit adaptation (which requires very little 
preparation time; Telgen, Parvin, & Diedrichsen, 2014). 

appropriate motor commands for countering the mir-
ror were rarely elicited—rather, they appear to be 
blunted—suggesting that participants had not formed 
an automatic, mirror-reversed internal model (fig-
ure 46.2E; Telgen, Parvin, & Diedrichsen, 2014). After 
rotation learning, however, adapted motor commands 
were highly reliable and were easily expressed at short 
reaction times, consistent with the updating of an exist-
ing control policy. These results suggest that when 
humans are required to learn a novel, complex visuo-
motor mapping, error-based adaptation alone cannot 
forge a new automatic control policy—that process 
likely requires weeks of training and perhaps other neu-
ral systems, like the basal ganglia. In this sense, mirror-
reversal learning is similar to learning a novel motor 
skill from scratch.

Critically, participants in the mirror-reversal study 
(Telgen, Parvin, & Diedrichsen, 2014) were given limited 
reaction time to block time-consuming explicit plan-
ning processes. It is possible that performance under 
mirror reversal would be much improved given ample 
time to deliberate on each trial; indeed, explicit knowl-
edge of the environment does affect how simple motor 
skills like the serial reaction time task (SRT) are learned 
and which brain networks are recruited during learn-
ing (Grafton, Hazeltine, & Ivry, 1995).

Recent results have put forward a potential interac-
tion between deliberate action selection and implicit 
adaptation. Evidence has been provided that adaptation 
is maximal at the most visited aiming direction (Day 
et al., 2016)—that is, the actual parameter that under-
goes implicit adaption may be tied to the volitional 
motor plan itself, rather than the downstream muscle 
commands (but see Gonzalez Castro, Monsen, & Smith, 
2011). This can be tested using a generalization task, in 
which aftereffects are probed at various locations. The 
largest aftereffects are seen when, in the washout phase, 
participants reach in the direction they most commonly 
reported aiming toward during learning, not the direc-
tion they actually moved to (McDougle, Bond, & Taylor, 
2017). Thus, the explicit planning stage may determine 
which internal representation is updated by subsequent 
sensory prediction errors.

This interpretation is echoed in interference studies, 
in which two opposing force field perturbations are 
induced over the same movement direction (on differ
ent trials). Sheahan, Franklin, and Wolpert (2016) 
showed that interfering perturbations can be learned if 
each is associated with a different movement plan, 
operationalized by different “follow-through” targets 
that participants would occasionally have to move toward 
at the end of the reach (i.e., after pushing through the 
force field). Without cueing distinct plans, massive 
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improvements in mirror tracing, a difficult task in 
which a complex shape must be traced under mirror-
reversed vision of the hand. H. M. appeared to improve 
at this, and similar motor tasks, without explicit aware-
ness that he had ever performed the task before (Mil-
ner, Corkin, & Teuber, 1968; Shadmehr, Brandt, & 
Corkin, 1998).

Critically, two facts about the studies on H. M. are 
relevant: First, while H. M. did show some improvements, 
his performance was often well below that of controls, 
suggesting that some aspect of performance was 
impeded by medial temporal lobe damage. If learning 
such tasks was purely procedural, why should he experi-
ence any deficits?

Second, and more importantly, for H. M. to properly 
perform the motor tasks each day he had to receive 
explicit instructions on both what the task required 
and how to do it (Stanley & Krakauer, 2013). Although 
H. M. could follow these instructions to set about doing 
the task, he would forget the instructions between ses-
sions. Similar results have been found in studies of 
amnesiac patients learning to use novel tools: without 
daily explicit instruction, amnesiac patients cannot 
begin to solve such tasks (Roy & Park, 2010).

Access to episodic memory may play a key role in 
motor learning by setting the “initial state” of the learn-
ing process—that is, to rapidly reduce the dimensional-
ity of the learning problem by selecting a manifold of 
correct actions to be performed. One possibility is that 
the medial temporal lobe helps the learner recognize 
the learning context and recall the appropriate subset 
of actions that have been useful in similar situations in 
the past. Indeed, episodic control has recently become an 
important concept in reinforcement learning (Gersh-
man & Daw, 2017).

Moving forward, motor learning should be under-
stood as recruiting a full taxonomy of memory systems, 
even in the context of simple adaptation tasks. That a 
wide network of neural systems serves motor adapta-
tion should not be surprising; indeed, adaptive, precise 
movement is perhaps the most fundamental function 
of the central nervous system.
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