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Structured dynamics of hierarchical action selection 
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Abstract 
Extensive work has examined how individuals structure 
information in cognitive representations. However, the 
dynamics of how these structured representations are 
implemented in real time and how cognitive and motor 
processing interact during action selection have received 
relatively less attention. Here, we use computational modeling 
to closely examine the dynamics of hierarchical action 
selection at the scope of individual decisions. We had 
participants learn eight stimulus-action associations with latent 
hierarchical structure. They then engaged in a forced response 
task where we manipulated the amount of time participants had 
to prepare each response. We find evidence that hierarchical 
action selection is a top-down, serialized process but appears 
to occur without bottlenecks between decision-making and 
movement. Overall, our results highlight a close coupling 
between cognitive and motor processing during hierarchical 
action selection. 

Keywords: hierarchy, structure learning, action selection, 
forced response, dynamics 

Introduction 
Hierarchical cognitive representations are a hallmark of 
human cognition. There is evidence across a wide range of 
domains that people utilize these structured representations 
to facilitate behavior (Behrens et al., 2018; Collins et al., 
2014; Theves et al., 2021). Further, there is evidence that 
even simple visuomotor routines can be represented 
hierarchically (Logan, 2018; Trach & McDougle, 2022). 
While the structure of these representations has been widely 
studied, there has been limited work examining how they are 
implemented in real time. Here, we use psychophysics and 
computational modeling to characterize the dynamics of 
hierarchical decision-making and action selection within the 
scope of individual decisions. 

Previous work addressing hierarchical cognitive 
representations largely utilizes differences in reaction time 
(RT; Dykstra et al., 2022) or variation in the magnitude of RT 
“switch costs” to make inferences about the structure of 
cognitive representations (Collins, 2017). “Switch cost” in 
this context refers to slowed RTs on trials where participants 
must switch tasks or responses relative to trials where they 
repeat the same task or response. For example, a participant 
will respond slower to the color of a presented stimulus if 
they were asked to respond to the shape on the previous trial 
(e.g., Schneider & Logan, 2006). Such switch costs are 
thought to reflect cognitive effort involved in “offloading” 

previously task-relevant information and preparing to process 
newly task-relevant information (Schneider & Logan, 2006; 
Strobach et al., 2012). In the context of hierarchical tasks, 
switch costs are an especially useful tool as they can occur at 
multiple levels of a task (e.g., ‘task’ switch costs versus 
‘response’ switch costs; Korb et al., 2017; Mayr & Bryck, 
2005) and increase with the level of abstraction such that 
switch costs are higher at superordinate levels of a task 
relative to subordinate levels (task switch costs > response 
switch costs; Collins, 2017; Collins et al., 2014). Thus, 
researchers can use the magnitude of switch costs to infer 
which task features are superordinate to others from behavior.  

Take for example the goal of copying or pasting on Macs 
or PCs (Figure 1A). Each of these operating system-goal 
pairs necessitates a unique motor plan (e.g., command-c 
versus command-v or ctrl-c versus ctrl-v). While all four 
motor plans are highly similar, you might have the intuition 
that switching between operating systems (ctrl-cà 
command-c) is more difficult than switching between 
copying and pasting within one operating system (ctrl-cà 
ctrl-v). Thus, based on this switch cost, we can infer that we 
represent this type of task hierarchically, where operating 
system is superordinate to goal which in turn governs 
response output. While this approach is useful for studying 
the structure of representations to a certain extent, it does not 
reveal the dynamics of how these structures are implemented 
in real time, particularly within the scope of the execution of 
individual actions.  

Such hierarchical decision-making is canonically 
conceptualized as a top-down, serialized process (e.g., 
Sigman & Dehaene, 2005). That is, decisions at superordinate 
task levels must be resolved before proceeding down through 
the hierarchical cognitive representation to subordinate levels 
and finally to the motor response level. In the context of our 
example, this view suggests that you must finish determining 
the operating system before you begin to consider the goal 
level and finally the actual movement. Some behavioral and 
neural work has challenged this ‘bottleneck’ view, providing 
evidence of parallel processing of information at different 
task levels (Cellier et al., 2022; Ranti et al., 2015). In one 
recent example, Cellier et al. (2022) used EEG to reveal 
persistent and temporally overlapping representations of 
information across hierarchical levels of a cognitive control 
task. Parallelization in this context is thought to be possible 
due to a hypothesized hierarchical gradient of 
representational abstraction in the prefrontal cortex (Badre & 
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Desrochers, 2019). Importantly, such work does not consider 
the role of motor processing in their analyses and it remains 
an open question whether parallel hierarchical processing 
occurs in the motor domain at the level of individual action 
selection (e.g., choosing one effector over another).  

We address the limitations of typical hierarchical decision-
making tasks and expand on existing literature by using a 
forced response paradigm (Figure 1E) in conjunction with a 
stimulus-action learning paradigm (Trach & McDougle, 
2022). For this paradigm, participants first learned an eight-
to-eight stimulus-action mapping (Figure 1B) from visual 
stimuli to finger responses, spanning the two hands (no 
thumbs). The mapping followed an intuitive hierarchy where 
different stimulus features (color, shape, pattern) were 
associated with different spatial/motor features of the task 
(hands, pairs of fingers, left/right positions within those 
pairs). After training to asymptote, participants entered a 
forced response phase (Hardwick et al., 2019; McDougle & 
Taylor, 2019). Here, they had to synchronize their responses 
to a precisely-timed auditory cue played at the end of a 
metronomic countdown. We manipulated the amount of time 
participants had to prepare each response by varying when 
the visual stimulus was displayed during the countdown. For 
example, if the stimulus was displayed early in the 
countdown, participants would have a longer time to prepare 
their response before having to respond at the end of the trial. 
On other trials, the visual stimulus might be displayed toward 
the end of countdown, right before a response had to be made; 
here, participants essentially had to guess to respond at the 

correct time. Using this paradigm, we measured how 
hierarchical action selection unfolds over time by examining 
the types of errors people made at different preparation times. 
In this way, we can characterize decision-making and motor 
planning dynamics continuously over time, rather than being 
limited to responses at the end of the decision-making process 
as in traditional reaction time (RT) measures.  

We also employed computational modeling to simulate 
different behavioral strategies in our hierarchical task. 
Overall, we found evidence that during hierarchical decision-
making and action selection, levels of the hierarchy are 
processed serially, but likely without bottlenecks – that is, 
multiple levels can be resolved at once as people select an 
action but are resolved from “top to bottom.” This finding 
thus unites serial and parallel models of hierarchical 
processing, arguing for a mixture of both. Further, our results 
reveal a strikingly tight coupling between cognitive and 
motor processing: instead of motor output simply being the 
end result of a completed cognitive or perceptual process, we 
find that different subsets of motor actions are dynamically 
potentiated as hierarchically represented sensory input is 
interpreted. This discovery suggests that selecting actions 
from a structured sensorimotor mapping involves rapid, 
orderly hierarchical processing, and involves a continuous 
flow of information from cognition to action. 

 
Methods 

Participants 

Figure 1. A) Diagram of hierarchical organization of operating system-goal pairs where operating system is superordinate 
to goal. B) Example structure of stimulus-action associations in the learning task. Hand is associated with shape (top level), 
then couplet with color (middle level), and finally pattern with finger (bottom level). C) Illustration of example trials from 
the motor baseline task. D) Illustration of  example trials of learning task. E) Schematic of individual forced response trial. 

Participant aligns response with fourth beep. Stimulus onset can occur at any point during the trial interval. Preparation time 
(PT) is the time between stimulus onset and response. Timing and accuracy feedback displayed after response. 
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40 participants (N = 22 female; mean age =19.5; range =18-
22) were recruited through the student subject pool at Yale 
University. They received 1 course credit/hour for their 
participation. We excluded 4 participants that did not show 
reliable evidence of learning (i.e., got fewer than 25% of trials 
correct on at least 4 of the 8 stimulus-action associations). We 
planned to exclude participants that did not respond to >75% 
of trials in either the learning or forced response phase and 
participants that were unable to respond on time during the 
forced response task at least 25% of the time, however no 
subjects met those criteria. Our final sample included 36 
participants (N = 19 female; mean age =19.6; range =18-22). 

Task Design 
Experimental sessions were 1 hour in duration and consisted 
of four phases: 1) a motor baseline task (4 min), 2) forced 
response task training (3 min), 3) the stimulus-action learning 
task (27 min), and 4) forced response task (20 min).  

 
Motor Baseline Task. Participants first engaged in a cued-
response task to measure intrinsic finger-to-finger switch 
costs prior to the learning task (Figure 1C). During this task, 
eight squares were displayed on the screen that were spatially 
aligned with the participant’s hands on the keyboard (left 
hand: A,S,D,F; right hand: H,J,K,L). On each trial, one of the 
squares would change from white to green and participants 
were instructed to press the key that was aligned with the 
green square as quickly and accurately as possible. The trial 
ended once the participant responded with the correct finger. 
After the correct response, all the squares turned back to 
white for 100 ms before the next trial began. Participants 
executed 489 trials of this task and the trial sequence included 
all possible transitions between fingers (e.g., right hand pinky 
to left hand index), including finger repeats (e.g., right hand 
index to right hand index). Trials where participants 
responded incorrectly on their first attempt and the first five 
trials of the task were excluded from analysis. 

Next, we used this task to introduce the forced response 
procedure to participants. On each trial, participants heard 
four beeps each spaced 400 ms apart. Participants were 
instructed to respond in synchrony with the last of the four 
beeps, regardless of when the stimulus they were responding 
to appeared on the screen. During this practice phase, the 
green square always appeared with the first beep in the 
sequence so participants had 1.2 s to prepare their response 
before responding in time with the last of the four beeps. 
They received feedback on whether their response was 
correct and whether they responded at the correct time during 
the practice. A correct response was signaled if participants 
responded with +/- 100 ms of the fourth tone. 

 
Learning Task. During the learning task, participants were 
instructed to use trial-by-trial reward feedback to figure out 
the correct response to a visual stimulus (Figure 1D). Like 
the motor task, participants used eight fingers to respond (left 
hand: A,S,D,F; right hand: H,J,K,L). Each button was 
uniquely and deterministically associated with one visual 

stimulus. On each trial, participants would see the stimulus 
(3.5s), make a response on the keyboard, and then receive 
binary feedback as to whether their response was correct or 
not (750ms). During the main task, they saw 56 iterations of 
each of the eight stimuli (448 total learning trials). The goal 
was to use the feedback to figure out which action was 
associated with each of the eight stimuli.  

Participants were given instructions and executed a short 
practice block with three emojis as the visual stimuli to 
ensure they understood the instructions before beginning the 
main learning task. They were also shown the eight stimuli 
for the main learning task in a random order before 
beginning. 

To embed hierarchical structure in the task, we varied the 
visual stimuli on three features – shape, color, and pattern – 
and assigned each feature to a level of an intuitive motor 
hierarchy (hand > finger-couplet > finger, Figure 1B; Trach 
& McDougle, 2022). Each feature had two possible values 
(e.g., color: purple or orange) in order to create the eight 
stimuli for the learning task. For example, if color was 
associated with the top level of the motor hierarchy (i.e., 
hand), then the correct actions for all of the purple stimuli 
would be on one hand and the correct actions for all of the 
orange stimuli would be on the other hand. Participants were 
not informed about this structure. We counterbalanced the 
assignment of stimulus feature to motor-hierarchy level 
across participants to ensure that no effects were driven by 
differences in feature salience. Importantly, all features were 
relevant to determining the correct actions (i.e., the correct 
response could not be determined without attending to all of 
the three features), however participants did not need to 
represent the task hierarchically to perform it successfully. 
We only include consecutively correct trials (i.e., trials where 
the participant made the correct response on that trial and the 
previous trial) in our analyses. These trials generally occur 
later in the learning task once the mapping is well-learned. 

 
Forced Response Task. After participants learned the eight 
stimulus-action pairs during the learning task, we tested 
response retrieval dynamics using a forced response 
paradigm. Before beginning, participants were reminded that 
the correct actions for each stimulus that they had just learned 
would remain the same in the final phase.  

On each trial, participants heard four, high-pitched beeps 
spaced 400 ms apart (Figure 1E). They were instructed to 
time their response to coincide with the final of the four beeps 
(i.e., 1.2s after the first beep), regardless of when they were 
prepared to respond. In order to test our primary questions, 
we manipulated the amount of preparation time (PT; i.e., the 
amount of time between when the stimulus was displayed and 
the fourth beep) that participants had on each trial by varying 
when the stimulus was displayed during the trial interval. For 
example, if the visual stimulus appeared with the initial beep, 
the participant would have 1.2s of PT on that trial. On other 
trials, the stimulus would be shown later during the sequence 
of beeps, leaving participants with less PT on those trials. We 
varied PT from 100ms-1.2s by uniformly sampling in this 
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range across trials. Thus, on some trials participants would 
have sufficient time to plan and execute correct actions, 
whereas they might be forced to rush (or guess) on trials 
where PT was very short. Our primary analyses involved 
examining patterns of errors at different amounts of PT in 
order to characterize the action preparation process over the 
whole response interval.  

Participants received binary feedback on whether they had 
made the correct action and whether they had responded at 
the right time on every trial (Figure 1E). They executed 770 
forced response trials with short breaks every approximately 
96 trials. Participants were encouraged to primarily attend to 
the timing of their responses and try to respond to the best of 
their ability on every trial. Trials with responses before the 
stimulus appeared or after 1.3s were excluded from analysis. 

Results 
Learning task results. Participants performed the task well 
and showed learning across the session (t(35) = 522.14, p < 
.001; Figure 2A). Participants were more accurate at 
responding with the correct hand as compared to the correct 
couplet overall, providing initial evidence that they were 
representing the hierarchical structure of the task (p(Correct 
hand) = .88; p(Correct couplet) = .82; t(35) = 5.86, p < .001). 
However, by the end of the learning phase (i.e., in the last 5 
iterations of each stimulus), hand- and couplet-level learning 
were not statistically different (p(Correct hand) = .98; 
p(Correct couplet) = .96; t(35) = 1.98, p = .056). 

Before examining reaction times (RTs) to test whether 
participants were representing the task hierarchically, we 
corrected all RTs in the learning task using RT switch costs 
measured during the baseline motor task. This process 
controlled for potential baseline biomechanical effects of 
switching between specific fingers. For example, if response 
transitions across hands take longer that response transitions 
within hand due to intrinsic biomechanical constraints, this 
would inflate the effects we observe in the task. To correct 
for this, we subtracted the mean RT for each finger-to-finger 
transition in the baseline task from the RTs of the same 
finger-to-finger transition in the learning task (Trach & 
McDougle, 2022). This correction accounts for variation in 

RT driven by intrinsic motor constraints and isolates RT 
variation related to learning the task’s structure. 

We tested if participants were representing the task 
hierarchically in two ways: First, we compared switch costs 
at different levels of the task. Previous work indicates that RT 
switch costs should be larger at higher versus lower levels of 
a hierarchical task (Collins et al., 2014; Collins & Frank, 
2016). We found that corrected RT switch costs on correct 
trials did in fact vary in size across levels of the task (repeated 
measures ANOVA RT switch cost x level(finger, couplet, 
hand): F(2,70) = 25.28, p < .001). Specifically, switch costs 
were larger at superordinate levels of the task as compared to 
subordinate levels (hand vs couplet: t(35) = 3.23, p = .0027; 
hand vs finger: t(35) = 7.08, p < .001; couplet vs finger: t(35) 
= 3.91, p < .001), providing further evidence that participants 
were representing the task hierarchically.  

Second, we entered corrected RTs on correct trials into 
three linear mixed effects models to further examine whether 
participants were representing the task hierarchically, using: 
1) a Hierarchical model, 2) a Stimulus-based model, and 3) a 
Flat model. First, the hierarchical model used distance within 
the hierarchical rule structure (i.e., the number of graph edges 
between the current and previous stimulus in the hierarchical 
rule structure; Trach & McDougle, 2022)  to predict RTs. 
Second, the stimulus-based model predicted RTs with the 
number of stimulus features that switched on a given trial. 
Third, if participants were simply learning one-to-one 
associations between stimuli and actions and not representing 
any latent structure in the task, switching from any response 
to any other action should incur the same RT switch cost. 
Therefore, the predictor for the flat model was simply 
whether the participant responded with the same or a different 
finger on a given trial. Consistent with previous, we found 
that the hierarchical model was the best fit for behavior 
(Hierarchical: BIC = 115,451; Stimulus-based: BIC = 
115,631, Flat: BIC = 115,899; Figure 2B; Trach & 
McDougle, 2022). Overall, these findings indicate that 
participants were representing the latent hierarchical 
structure of the task and that this structure influenced 
participant behavior. 
 
Forced response results. Our primary analyses for the 
forced response phase of the task involved examining 
patterns of errors at different PTs. To that end, we coded each 
response participants made based on correctness at each level 
(e.g., 1/1/0 denotes that the participant responded with the 
correct hand and couplet but the incorrect finger, whereas 
0/1/0 would indicate that the participant had responded with 
the correct couplet but incorrect hand and finger). For 
visualization purposes, we only code the finger level as 
correct if the participant responds with the correct finger on 
the correct hand, however the couplet level is coded as correct 
if they respond with the correct couplet on either hand. Thus, 
each trial can be coded as one of four possible error codes 
(1/1/0, 1/0/0, 0/1/0, 0/0/0) or as correct (1/1/1). We then used 
a sliding window of 100 ms across to calculate and visualize 
the probability of each type of error over the entire range of 

Figure 2. A) Learning curves depicting overall accuracy 
and the probability of responding with the correct hand or 

couplet. B) BIC comparison between hierarchical model and 
stimulus-based or flat model. 
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presented PTs (Figure 3A). At the shortest PTs, participants 
were at chance for each response type (chance level: .125 for 
1/1/1 and 1/1/0, .25 for 1/0/0, 0/1/0, and 0/0/0) and response 
probabilities evolved with increasing PT. In this way, we can 
characterize the ongoing influence of the cognitive 
representation of the task on hierarchical action selection 
continuously across the trial window. 

We designed a computational model to characterize the 
dynamics of processing across the trial interval and test 
whether processing at different hierarchical levels of the task 
happens serially or in parallel (Figure 3B). The basic model 
assumes that action preparation time is normally distributed, 
and takes some average amount of time, µ, with variance s. 
We can calculate the probability of executing a specific 
response as a function of PT by taking the cumulative density 
of the RT distribution (Figure 3B). We modeled the 
probability of each response at each PT as a mixture of this 
action selection probability curve and some degree of random 
guessing (“lapses”) across all possible actions, with guessing 
scaled by weighting factor r.  

To test whether processing across the hierarchical 
representation happens serially or in parallel, we allowed 
three separate µ parameters when fitting the model, with one 
assigned to resolving each level of the task (µhand, µcouplet, 
µfinger). Here, each µ describes how long it takes to select the 
correct action candidates for each level of the task. Thus, if 

processing starts with the superordinate task levels before 
percolating down to subordinate levels, we expect fitted µhand 
values to be lower (i.e., faster) than µcouplet or µfinger. However, 
if action selection across levels happens fully in parallel, or 
as the end result of cognitive decision-making processes that 
do not reach the motor system until completed, we would not 
expect this pattern of results (i.e., µhand = µcouplet = µfinger).  

We fit our action selection model to participants actual 
choices and PTs using maximum likelihood estimation. We 
fit 50 iterations to each subject to avoid local minima in the 
likelihood surface and constrained µ  between .2 and 2s and 
s  between .01 and .6s. Importantly, while we simplify 
correctness at the lowest hierarchical level for visualization 
purposes (as described previously), the model is fit with full 
information about correctness at each level of the task. The 
simulated action probabilities based on the across-subject 
mean parameters are depicted in Figure 3C.  

Fitted µ parameters provided striking evidence that 
participants were, in real time, dynamically and serially 
modulating action probabilities based on the hierarchical task 
levels (Figure 3D-E; µhand = .86; µcouplet = 1.13; µfinger = 1.28; 
Wilcoxon signed rank test: µhand versus µcouplet: z = -4.48, p < 
.001; µhand versus µfinger: z = -5.20, p < .001; µcouplet versus 
µfinger: z = -4.15, p < .001). That is, participants were fastest 
at determining the correct hand to respond with, followed by 
the correct couplet, before ultimately selecting the correct 

Figure 3. A) Probability of different actions/errors at different PTs over the trial interval. B) Illustration of model and 
competing hypotheses. Serial action preparation predicts distinct µ values for each level, whereas parallel preparation does 

not. C) Model simulation of probability of different responses at different PT over the trial interval. D) Mean µ values at each 
level of the hierarchy from model fitting. E) Response preparation functions based on model fitting results. F) Comparison of 

BIC for one-µ versus three-µ model by subject. Negative values indicate that three-µ model was a better fit for behavior. 
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finger. Importantly, we did not constrain the model to order 
these values sequentially – this pattern of results is driven by 
fitting the model directly to participant behavior.  

For completeness, we also fit a model that only allowed for 
only a single µ parameter (i.e., assuming parallel processing 
across task levels) to compare with our main model. We 
found that the three-µ model was a better fit for participant 
behavior than the single-µ model in 30 out of the 36 
participants, even after accounting for its greater number of 
free parameters (Figure 3F; summed BIC three-µ = 76,536; 
summed BIC one-µ = 77,767). Overall, our results indicate 
that participants sequentially resolve representational levels 
from high (superordinate) to low (subordinate) as they select 
a single action from a structured visuomotor mapping. 
Further, our results strongly suggest that hierarchical action 
selection evolves continuously over the course of a single 
decision, rather than emerging from a bottleneck after the 
completion of an earlier cognitive decision-making stage. 

Discussion 
Here, we utilized a novel computational model to 
characterize the real-time dynamics of action selection within 
the scope of single decisions. The latent hierarchical structure 
of our stimulus-action mapping allowed us to test whether 
actions are a result of serialized, hierarchical processing or if 
processing across task levels can occur simultaneously. Our 
results strongly suggest that action selection is hierarchical, 
serialized, and top-down, in contrast to some evidence for 
purely parallel processing in the domain of cognitive control 
(Cellier et al., 2022; Ranti et al., 2015). Moreover, our pattern 
of results illustrates a tight coupling of cognitive, perceptual, 
and motor processing and shows that movement selection 
evolves within individual trials along with hierarchical 
decision-making processes, rather than emerging from a 
bottleneck (Selen et al., 2012). Beyond novel scientific 
insights into the action selection process, this work builds on 
a productive behavioral method to approach questions about 
the dynamics of cognitive processing (Hardwick et al., 2019; 
McDougle & Taylor, 2019) and highlights the utility of 
computational modeling in quantifying these dynamics. 

While movement is sometimes considered a final output of 
cognitive processing (Pashler, 1984), our findings are 
consistent with a tight coupling between decision-making 
and motor processes during hierarchical action selection – 
each stage of perceptual processing (i.e., shape à color à 
pattern) biased the probability of different actions being 
selected in real time. Thus, our results are consistent with 
work (in non-hierarchical settings) that highlights dynamic 

flow of information from ongoing decision-making processes 
to the motor system (Selen et al., 2012; Spivey et al., 2005). 
A possible alternative to this result would be that the 
processing of stimulus features occurs in a top-down, 
serialized manner but action selection happens as a single 
stage after the completion of decision-making (Figure 4, 
right panel). If this were the case, we would expect a uniform 
distribution of error types across the trial interval and 
equivalent µ values at different task levels from the 
computational modeling. Future work using neural recording 
methods with high temporal and spatial resolution (such as 
MEG) are essential in clarifying interactions between 
cognitive systems in hierarchical decision-making settings.  

Such neural investigation could also inform a more 
wholistic description of the precise temporal dynamics of 
hierarchical action selection. For example, our results stand 
in contrast to recent work in the domain of cognitive control 
that highlight surprisingly parallel processing across 
representational task levels (Cellier et al., 2022; Ranti et al., 
2015). It is possible that there is some degree of parallel 
processing that we are unable to detect with our behavioral 
task. The addition of neural recording could allow us to 
characterize the dynamics of perceptual processing beyond 
behavioral outputs of responses and examine neural 
representation across task levels. On the other hand, our 
model also is not constrained to the strictest serial processing 
strategy; it does not require that superordinate levels are 
completely resolved before subordinate levels. A strict serial 
model would force the agent to prune large portions of the 
action options at each hierarchical level of processing before 
moving on to the next one. In future work, we can formalize 
this alternative hypothesis with computational modeling to 
compare to our current model. 

In future analyses, we also plan to extend our model to 
integrate contextual information about each trial to precisely 
capture participant behavior. Specifically, we can develop 
models that integrate information about the previous trial to 
ask if different types of action transitions influence speed-
accuracy functions. One limitation of our current model is 
that the hand response function shows slightly above chance-
level performance even at the shortest PTs. This effect in the 
model could emerge from differences in response function 
for hand-repeat versus hand-switch trials, consistent with 
extensive evidence that trial history impacts hierarchical 
processing and behavior (Korb et al., 2017; Mayr & Bryck, 
2005; Strobach et al., 2012).  

This study represents an important step forward in 
understanding the dynamics of hierarchical processing in 
human cognition and motor control. We expand beyond 
previous studies by examining the implementation of 
hierarchical representations, and characterize the interplay of 
cognitive and motor processing during hierarchical decision-
making. We provide evidence for serialized, top-down 
hierarchical processing in the context of action selection and 
a tight coupling between hierarchical decision-making and 
action selection, furthering our theoretical understanding of 
the interplay between cognitive systems in decision-making. Figure 4. Example models of cognitive-motor (C-M) 

processing. 
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