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 A B S T R A C T

How automatic is reinforcement learning (RL)? Here, using a recent computational framework that separates 
contributions from working memory versus RL during instrumental learning, we asked if taxing higher 
executive functions influences a putatively lower-level, procedural RL system. Across three experiments, we 
found that dual-tasking could indeed disrupt RL, even when isolating RL from working memory’s contributions 
to behavior. These results speak to methodological considerations in the use of dual tasks during learning, 
suggesting that cognitive load can interfere with multiple learning and memory systems simultaneously. 
Moreover, our results point to a less constrained conception of RL as a putatively low-level procedural system, 
supporting a view that tight links exist between executive function and subcortical learning processes.
1. Introduction

The study of instrumental learning (learning to select actions that 
lead to rewards) typically focuses on the reinforcement learning pro-
cess (RL), which is well captured by a computational framework 
that formalizes reward as a teaching signal to estimate expected val-
ues (Rescorla, 1972; Sutton & Barto, 1998). Although RL is a powerful 
learning system, human beings also utilize higher-level executive func-
tions during instrumental learning tasks, such as working memory 
(WM) and attention. A growing body of research suggests that executive 
functions like working memory and attention shape the learning of 
simple instrumental policies alongside reinforcement learning (Collins 
& Frank, 2012; Leong, Radulescu, Daniel, DeWoskin, & Niv, 2017; 
Rmus, McDougle, & Collins, 2021; Yoo & Collins, 2022). Executive 
functions typically require top-down cognitive control, process in-
formation explicitly, and operate on a shorter time span, whereas 
reinforcement learning operates more implicitly, and over a longer 
time span (Collins, 2018). For example, executive functions could aid 
instrumental learning by directing attention to relevant reward signals 
and contextual cues, and encode these sources of information explicitly 
in working memory (such as explicitly remembering that one action 
yielded a reward but another action did not). Due to the intrinsic 
capacity limitations of working memory, however, people are unlikely 
to be able to explicitly remember sufficient information about reward-
action contingencies over longer periods of time. Nevertheless, even 
without explicit memory, people are still able to implicitly learn to 
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choose more rewarding actions over less rewarding ones (Cortese, Lau, 
& Kawato, 2020; Gabrieli, 1998; Pessiglione et al., 2008; Shohamy, 
2011; Wilkinson & Jahanshahi, 2007), as demonstrated, for example, 
by their ability to learn more information than can be held in work-
ing memory (Collins & Frank, 2012). This phenomenon is typically 
attributed to the reinforcement learning (RL) process.

Across various populations, studies have shown that working mem-
ory and reinforcement learning indeed operate in parallel during simple 
instrumental learning tasks, and compete for action control (Collins & 
Frank, 2012; Master et al., 2020; Viejo, Khamassi, Brovelli, & Girard, 
2015). These findings can be formalized in computational models that 
include both RL and WM — such models are designed to capture 
human behavioral and neural data in simple instrumental learning 
contexts (Collins, Ciullo, Frank, & Badre, 2017a; Collins & Frank, 2018; 
Viejo et al., 2015).

While it is clear that both WM and RL can contribute to human 
reward learning, what is poorly understood, however, is whether rein-
forcement learning processes are functionally independent of executive 
functions, or if the two systems interact with each other. Past research 
has typically framed RL as a closed-loop, lower-level process that does 
not strongly rely on higher-level cognitive inputs. That is, RL is often 
thought of as being a procedural learning system. However, recent 
research has challenged this view by suggesting multiple ways in which 
RL computations appear to be tightly linked to executive functions, 
including attention (Leong et al., 2017; Niv et al., 2015), abstract 
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motivational goals (McDougle, Ballard, Baribault, Bishop, & Collins, 
2021; Sinclair, Wang, & Adcock, 2023), and working memory (Collins, 
2018; Collins, Ciullo, Frank, & Badre, 2017b; Collins & Frank, 2018; 
Rmus et al., 2021; Yoo & Collins, 2022). To our knowledge, minimal 
prior work has applied causal experimental tests on links between 
executive functions and reinforcement learning processes that perturb 
executive function while also measuring its direct contributions to 
learning. Without doing so, it is difficult to know if perturbing an 
executive function (e.g., WM) during learning simply disrupts that 
specific function’s contributions to behavior, or if ‘downstream’ effects 
on the RL system are also induced. If executive functions contribute 
to instrumental learning independently, taxing them would not impact 
the reinforcement learning process, and indeed only impact learning 
behavior through executive function’s contributions themselves. On the 
other hand, if RL is not fully separable from parallel executive func-
tion contributions to learning, perturbing executive functions should 
additionally impact the reinforcement learning process. This impact on 
RL could be either facilitating (leading to faster learning of rewarding 
actions) or inhibitory (leading to slower learning).

In three experiments, we tested these hypotheses by directly per-
turbing executive functions using a classic ‘‘dual-task’’ manipulation 
during an instrumental learning paradigm that is optimized to disen-
tangle RL from WM. Dual-tasks are a common procedure for taxing 
executive function and have been deployed across a range of cog-
nitive and learning tasks (Baddeley, 1992; D’Esposito et al., 1995; 
Economides, Kurth-Nelson, Lübbert, Guitart-Masip, & Dolan, 2015). 
We designed two ‘‘dual-task’’ conditions which only differed in when 
the dual task occurred within the flow of the experiment: ‘‘Task-
Overlap’’ and ‘‘Task-Switch’’. The ‘‘Task-Overlap’’ condition directly 
taxed executive function by presenting extra information for the par-
ticipant to remember while simultaneously performing the learning 
task. The ‘‘Task-Switch’’ condition freed participants from any extra 
working memory load during the choice and feedback process, but 
required them to engage in the recruitment of executive functions 
between learning trials. We performed 3 experiments: In the first 2, 
we compared the (standard) Single-Task condition with the ‘‘Task-
Overlap’’ condition, and varied the single-task inter-trial interval across 
experiments to control for timing differences between single- and dual-
task settings (see Methods). In the third experiment, we compared 
the ‘‘Task-Overlap’’ condition and the ‘‘Task-Switch’’ condition to each 
other.

Our overarching goal was to use a computational modeling frame-
work (the ‘‘RLWM’’ model) that captures reward learning behavior with 
separable WM and RL modules (Collins & Frank, 2012), to examine how 
taxing executive function through a dual task might affect different sub-
components of instrumental learning. The ‘‘RLWM’’ model was crucial 
for testing the effect of perturbing executive functions on reinforce-
ment learning, as behavioral data alone (such as average accuracy 
metrics) can depend on both mechanisms. All experiment materials, 
data, and analysis code are publicly available at https://osf.io/zutka/
?view_only=865528e02ce7435ab12e05390e427e7a.

2. Methods

2.1. Participants

Participants in all three experiments (N1 = 31, N2 = 31, N3 = 33) 
were recruited through the University of California Berkeley’s SONA 
platform and earned class credit for their participation. In experiment 
1, 21 females and 10 males participated with a mean age of 20.47. In 
experiment 2, 17 females and 14 males participated with a mean age 
of 21.32. In experiment 3, 26 females and 7 males participated with a 
mean age of 21.43. No participants were excluded. The experimental 
protocol was approved by the university’s local ethics committee. Writ-
ten, informed consent was obtained from all participants prior to their 
participation.
2 
2.2. Experimental procedure

2.2.1. Experiment 1
Participants were seated in front of a computer monitor and had 

their hands comfortably positioned on a computer keyboard. They 
then proceeded to the main experiment which was a computerized 
task written using Psychtoolbox (version 3.0.10) on Matlab (version 
R2016a). The main goal for the participants was to learn which key 
(out of 3 candidate keys) on the keyboard was associated with each 
stimulus presented on the screen. We used images from Collins et al. 
(2017a) as stimuli in our task.

After instruction and practice (designed to familiarize the partici-
pant with the task), the task had two phases: learning, and testing. In 
the learning phase, participants attempted to learn multiple stimulus–
response pairs in separate, independent blocks. In the testing phase, 
all stimuli from all learning phase blocks were displayed again in 
a random sequence, and participants responded but did not receive 
correct/incorrect feedback, allowing us to probe long-term retention of 
learned information, independent of WM.

The learning phase (Fig.  1) consisted of 10 independent blocks of 
trials, but the last block only served as a buffer between the learning 
and the testing phase and thus was excluded from later analyses. In 
each trial, participants saw an image presented on the screen and 
pressed one of the three keys in response. A block consisted of either 
2, 3, or 6 image-key associations to learn and 12 iterations per image, 
pseudo-randomly interleaved to control for an approximately uniform 
distribution of delays between iterations of the same stimulus. Each 
block used a separate set of images to be learned, consisting of easily 
distinguished and named examplars of a category (e.g. vegetables, farm 
animals, etc. Yoo, Keglovits, and Collins (2023)). At the beginning of 
each block, participants saw all the images that they would encounter 
in that block for familiarization. Across blocks, the set size of the 
instrumental learning task was varied among 2, 3, and 6 (Collins & 
Frank, 2012). That is, in each block participants had to either learn 2, 
3, or 6 stimulus–response associations, a manipulation that is critical to 
delineating WM and RL in our modeling framework (Collins & Frank, 
2012). Stimuli were never repeated across blocks. The learning phase 
also included two conditions: Dual-Task and Single-Task, across blocks. 
In the Dual-Task condition, two blocks were performed at each set size, 
and in the Single-Task condition, one block was performed each at set 
sizes 3 and 6, and two blocks at set size 2. The block order was pseudo-
randomized except the last (10th) block. The last block, which was used 
as a buffer, always had set size 2 and trials in the Single-Task condition.

In the Dual-Task condition, a secondary task — the number judg-
ment task — was performed in addition to the instrumental learning 
task (Economides et al., 2015). For this task, two numbers were si-
multaneously displayed side-by-side with varying font sizes and integer 
values (e.g., a large font ‘‘2’’ on the left and a smaller font ‘‘6’’ on 
the right). Participants were asked to make either a ‘‘size’’ or ‘‘value’’ 
judgment of the number stimuli by pressing a key that corresponded 
to the position of either the visually larger number (e.g., ‘‘2’’, or left 
button) or the higher-value number (e.g., ‘‘6’’, right button; Fig.  1) . The 
particular judgment required (value versus size) was randomly selected 
on each trial. Approximately 80% of trials consisted of conflict trials, 
where the visually larger integer was smaller in value and vice-versa. 
The specific two integers presented were drawn randomly from [0, 9]
without replacement.

In Dual-Task blocks, the trial structure was as follows: Participants 
viewed one of the learning stimuli on the screen and two numbers 
positioned above the stimulus (Fig.  1). The numbers were displayed for 
0.3 s. The learning stimulus was continually displayed either until the 
participant responded with one of the three possible actions (‘‘j’’, ‘‘k’’, or 
‘‘l’’ with their right index, middle, or ring finger), or if 1.5 s had elapsed. 
If the response designated as correct for that stimulus was made, +1 
‘‘points’’ were displayed on the screen. If an incorrect response was 
given, 0 points were displayed. If the reaction time exceeded 1.5 s, the 
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Fig. 1. Task Design: (A) Block structure of the learning phase (all experiments): Participants performed 10 independent blocks of the instrumental learning task. The 10th block 
served only as a buffer between the learning and testing phase. Thus it was removed from all analyses. Participants saw a display of all possible stimuli in the block at the beginning 
of each block. (B, C) Single-Task blocks (experiment 1 and 2): regular instrumental learning task, each controlling for the total trial duration (B) or the inter-trial interval (C). 
(D) Main dual-task manipulation: Task-Overlap blocks (all experiments): participants had to remember the two numbers presented concurrently with the stimulus. After making 
a stimulus-dependent key-press (e.g. here L), and obtaining feedback (here a correct +1), participants were asked to perform a size or value judgment based on the remembered 
numbers. (E) Task-Switch blocks (experiment 3): the two numbers for the secondary task were presented after participants received the trial’s feedback, such that participants did 
not have to remember the two numbers but only needed to judge the numbers between learning trials. (F) Testing phase (all experiments): Each image repeated four times at 
randomized places in the sequence. No feedback was given.
message ‘‘please respond faster’’ was displayed, and if the response was 
faster than 0.15 s the message ‘‘too fast’’ was displayed. The feedback 
to the instrumental learning task was displayed for 1 s. Critically, after 
receiving feedback for the instrumental learning task, the participant 
was then asked to make either a ‘‘size’’ or ‘‘value’’ judgment of the 
previously-displayed numbers (‘‘a’’ or ‘‘d’’ with their left ring and index 
fingers, corresponding to the number displayed on the left or right, 
respectively). Participants had up to 1 s to respond to the number 
judgment task, but if they responded in less than 1 s, they would 
still need to wait until the end of the second before seeing feedback. 
Feedback was then given for the number judgment task (‘‘correct’’, 
‘‘incorrect’’, ‘‘please respond faster’’, or ‘‘too fast’’) and was displayed 
for 1 s as well. An inter-trial interval of 1.5 s (minus the reaction time 
of the instrumental learning task) then occurred, which consisted of a 
white fixation cross displayed in the center of the screen. The interval 
was computed as such to control for the total trial duration. Therefore 
the total trial duration was 4.5 s.

In Single-Task blocks, participants did not need to perform the 
number judgment task, but only needed to perform the instrumental 
learning task. Therefore, there was no number displayed above the 
learning stimulus and there was no question about the numbers fol-
lowing the feedback for the instrumental learning task. To ensure that 
the total trial length was the same as in the Dual-Task condition, the 
inter-trial interval was 3.5 s minus the reaction time.

To become familiarized with the tasks, participants performed the 
practice phase with three unique practice rounds before the learning 
blocks began: They first practiced the instrumental learning task on 
its own (10 trials), followed by the ‘‘number judgment’’ secondary 
task on its own (10 trials), then the Dual-task condition (10 trials). 
Experimenter instructions emphasized that participants should focus on 
performing equally well on both tasks in all blocks.

After the learning phase, participants proceeded to perform a sur-
prise testing phase. In the testing phase, the screen first displayed 
the instruction telling them that they would see images that they had 
encountered previously and that they needed to respond by retrieving 
the action that they originally learned was correct for that image (j, 
k, or l key). Similar to the learning phase, participants’ response to a 
3 
trial was valid if made between 0.15 and 1.5 s from the onset of the 
image. Unlike in the learning phase, however, no feedback followed 
their actions and there was no inter-trial interval. The testing phase was 
not divided into blocks, and all the images in the learning block were 
shuffled and presented in sequence at the center of the screen. Each 
image appeared four times in total in this shuffled sequence. The testing 
phase was included to provide a measure of long-term associations 
formed through RL, without immediate contributions from working 
memory processes (contrary to the learning phase where information 
was available within a short time frame). Because the information 
encoded in the RL system is retained for a longer period of time than the 
information encoded in working memory, we can attribute participants’ 
performance in the testing phase more to the learning outcome of the 
RL system (Collins, 2018).

2.2.2. Experiment 2
While experiment 1 controlled for the total trial duration between 

the Single-Task and the Dual-Task condition, the inter-trial intervals 
in the Single-Task condition were substantially longer than in the 
Dual-Task condition, potentially introducing a confound. In experiment 
2, we instead controlled for the inter-trial interval between the two 
conditions. Experiment 2 (Fig.  1) was identical to experiment 1 except 
that the inter-trial interval in the Single-Task condition was the same 
as the inter-trial interval in the Dual-Task condition, which was 1.5 s 
minus the reaction time. Therefore, unlike in Experiment 1, where the 
total trial duration was the same between the two conditions, the trial 
duration of the Single-Task condition was shorter than the trial duration 
of the Dual-Task condition in Experiment 2.

2.2.3. Experiment 3
While the previous 2 experiments controlled for the differences in 

inter-trial interval and trial duration, they could not identify whether 
the potential Dual-Task effect comes from simply having to switch tasks 
during learning, or from having to hold two numbers in memory while 
making decisions. To disentangle these two possibilities, we designed 
experiment 3 (Fig.  1).
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The learning phase of experiment 3 did not have Single-Task con-
ditions, but instead, it consisted of 2 different Dual-Task conditions:
Task-Overlap and Task-Switch. The Task-Overlap condition is exactly the 
same as the Dual-Task condition in experiments 1 and 2. Thus, in Task-
Overlap blocks, the number task and instrumental task were performed 
simultaneously – the number sizes and values had to be encoded and 
maintained while the correct stimulus-response association was being 
learned and/or retrieved. In contrast, in Task-Switch blocks, the same 
two tasks were performed but in succession – a complete trial of the 
instrumental learning task was performed (learning stimulus, response, 
feedback), followed by a complete trial of the number judgment task 
(number stimuli, response, feedback). In the instrumental learning task, 
same as the Single-Task trials in experiments 1 and 2, participants 
viewed one of the learning stimuli on the screen without the additional 
two numbers above them. The learning stimulus was continually dis-
played either until the participant responded with a valid keypress, or if 
1.5 s had elapsed. The feedback was then displayed for 1 s. After having 
received feedback for the instrumental learning task, the participant 
was then asked to make either a ‘‘size’’ or ‘‘value’’ judgment of two 
numbers. Unlike in the Task-Overlap condition, the two numbers were 
displayed right above the question, so participants could make the 
judgment while looking at the two numbers. Participants had also up 
to 1 s to respond to the number judgment task, but if they responded 
less than 1 s, they would still need to wait until the end of the second 
before seeing feedback. The feedback was displayed for 1 s as well. 
The feedback mechanism for both the instrumental learning task and 
the number task is the same as in experiments 1 and 2. Afterward, an 
inter-trial interval of 1.5 s (minus the reaction time of the instrumental 
learning task) occurred. The interval was computed as such to control 
for equal total trial duration (4.5 s) across the two conditions.

In sum, the only difference between the Task-Switch and the Task-
Overlap condition was that in the Task-Overlap condition, the two 
numbers appeared simultaneously with the instrumental task stimu-
lus for 0.3 s, and thus participants needed to hold these numbers 
in memory during the instrumental learning task, but in the Task-
Switch condition participants did not need to hold them in memory 
while performing the instrumental learning task. That is, the Task-
Switch condition was included to benchmark the global effects of taxing 
executive function without requiring secondary task representations to 
occupy working memory during the choice and feedback phases of the 
instrumental task.

All other aspects of the experiment were largely the same as ex-
periments 1 and 2, replacing the Single-Task condition with the Task-
Switch condition and replacing the Dual-Task condition with the Task-
Overlap condition. Particularly, in the Task-Overlap condition, two 
blocks were performed at each set size, and in the Task-Switch con-
dition, one block was performed each at set sizes 3 and 6, and two 
blocks at set size 2. The last (10th) block always had a set size of 2 
and trials in the Task-Switch condition, i.e., the easiest type of block, 
serving as a buffer between the learning and the testing phase and 
thus was excluded from all analyses. In the practice phase, participants 
performed 10 more trials of Task-Switch tasks after the 10 trials of the 
practice Task-Overlap trials.

2.3. Statistical analyses

All statistical analyses were done in R (version 4.3.1). To calculate 
the standard error of the mean, we used the std.error function in the
plotrix package (version 3.8.2). To perform the Wilcoxon test, we used 
the wilcox_test function in the rstatix package (version 0.7.2). To statis-
tically quantify the impact of different task variables on performance, 
we performed a two-way ANOVA and a mixed-effect regression analysis. 
To perform two-way ANOVA, we used the aov function. The dependent 
variable was average accuracy. The independent variables included 
were set size (3 levels: 2, 3, 6) and dual-task condition (2 levels: Task-
overlap vs. the control condition depending on the experiment) and 
4 
the interaction term. The mean and standard deviation are reported 
in supplemental table 1. To perform mixed-effect regression analysis, 
we used the mixed function in package afex (version 1.3.0), with 
model comparison method set to LRT, representing a likelihood ratio 
test. All continuous variables were scaled before passing them into 
the regression. We set the correct/incorrect responses as the outcome 
variable and subject identification number as the random intercept. For 
the learning phase data, we passed in four task variables as predictors:
condition, set size, delay (i.e., the number of intervening trials between 
the current and previous viewings of a specific stimulus), and cumulative 
reward (i.e., the number of successful trials with the current stimulus). For 
the testing phase data, we passed in three task variables as predic-
tors of performance: condition, set size, and asymptotic learning phase 
performance. We obtained the condition and set size of the stimuli 
presented in the testing phase by referring to the condition and set 
size those stimuli had belonged to during the preceding learning phase. 
The asymptotic rate of performance for each stimulus was obtained by 
computing the average correctness of the last 3 trials for that stimulus 
from the learning phase.

2.4. The RLWM computational model

Here we present the details of the ‘‘RLWM’’ model architecture, 
which functions as the basic foundation of our model-dependent analy-
ses (Collins & Frank, 2012). The model was designed to fit participants’ 
choices in this instrumental learning task, and capture simultaneous 
contributions from working memory and reinforcement learning. Prior 
work showed that this model outperforms alternative models that do 
not include a hybrid RL + WM structure; indeed, other models could 
not capture the patterns of behavior that reveal the dissociable contri-
butions of RL and WM on the performance in this instrumental learning 
task, in particular the strong effects of set size on accuracy (Collins, 
2018; Collins & Frank, 2012; Rac-Lubashevsky, Cremer, Collins, Frank, 
& Schwabe, 2023; Rmus et al., 2023). Therefore we rely on the RLWM 
computational framework to further examine the separate effects of 
perturbing executive functions on the RL and the WM system.

The RLWM model models the learning of stimulus-action values 
using a variant of a typical reinforcement learning model (Sutton & 
Barto, 1998). The model relies on two main variables representing the 
task environment. The first one is the state 𝑠 ∈ 𝑆 where 𝑆 represents the 
full stimulus/state space within a block (i.e., all the possible images that 
could appear). In our experiment, |𝑆| ∈ {2, 3, 6}. The second variable 
is the action 𝑎 ∈ 𝐴 where 𝐴 is the full action space (i.e., j, k, l). In our 
experiment, |𝐴| = 3 because there were three possible buttons to press 
as a response to the instrumental learning task. The algorithm proceeds 
in two stages, as introduced in the introduction: the value updating 
stage and the policy formation stage. In the value updating stage, for 
stimulus 𝑠 and action 𝑎 on trial 𝑡, the model estimates an expected value 
(i.e., the Q value) 𝑸(𝑠𝑡, 𝑎𝑡) by performing an update using the delta rule 
(Eq.  (2); Rescorla (1972)): 
𝑸𝑡+1(𝑠𝑡, 𝑎𝑡) = 𝑸𝑡(𝑠𝑡, 𝑎𝑡) + 𝛼𝛿𝑡 (1)

𝛿𝑡 = 𝑟𝑡 −𝑸𝑡(𝑠𝑡, 𝑎𝑡) (2)

where 𝛼 represents the learning rate and 𝑸𝑡 is a |𝑆| × |𝐴| matrix 
encoding all Q values given a trial 𝑡. 𝑸0 is initialized as a uniform 
matrix of 1

|𝐴| . 𝛿 ∈ [0, 1] is the reward prediction error, and 𝑟 ∈
{0, 1} is the (binary) reward received. Critically, the model captures 
the parallel recruitment of working memory (WM) and reinforcement 
learning (RL) by training two simultaneous learning modules: The 
reinforcement learning module is described by Eq.  (1). The working 
memory module is formally similar but has a learning rate of 𝛼 = 1
(algebraically equivalent to Eq.  (3)). Thus, the working memory delta 
rule has perfect retention of the outcome of the previous trial with 
stimulus 𝑠 , reflecting rapid learning of stimulus–response pairs that 
𝑡
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is qualitatively distinct from classic reinforcement learning. Working 
memory is also vulnerable to forgetting (Posner & Keele, 1967): The 
model captures trial-by-trial decay of stimulus-action weights 𝑊  (Eq. 
(4)), 
𝑾 𝑡(𝑠𝑡, 𝑎𝑡) = 𝑟𝑡 (3)

𝑾 𝑡+1 = 𝑾 𝑡 + 𝛾(𝑾 0 −𝑾 𝑡) (4)

where 𝛾 ∈ [0, 1] is the forgetting parameter that draws all W weights 
toward their initial values 𝑾 𝟎 = 𝑸𝟎. The model also captures a 
positive learning bias (i.e., the neglect of negative feedback) upon 
negative prediction errors (i.e., 𝛿 < 0). The learning rate 𝛼 is reduced 
multiplicatively: 𝛼− ∗ 𝛼 where 𝛼− ∈ [0, 1] controls the learning bias
(higher values cause less bias toward positive feedback, and lower 
values cause more). Learning bias occurs for both the reinforcement 
learning and working memory modules; in the latter case, the perfect 
learning rate of 1 is also scaled by 𝛼−.

In the policy formation stage, Q-values and W weights are trans-
formed by the Softmax function into a policy, i.e., a vector of probabili-
ties of taking each action. Separate working memory and reinforcement 
learning policies (represented by row vectors 𝜋𝑊𝑀

𝑡  and 𝜋𝑅𝐿
𝑡 ) are then 

combined in the calculation of the final policy via a weighted sum (Eq. 
(7)), 

𝜋𝑅𝐿
𝑡 = 𝑝(𝑎|𝑠𝑡) = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑸(𝑠𝑡, 𝑎), 𝛽) =

𝑒𝛽𝑸(𝑠𝑡 ,𝑎)
∑

𝑎𝑖∈𝐴 𝑒𝛽𝑸(𝑠𝑡 ,𝑎𝑖)
(5)

𝜋𝑊𝐿
𝑡 = 𝑝(𝑎|𝑠𝑡) = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑾 (𝑠𝑡, 𝑎), 𝛽) =

𝑒𝛽𝑾 (𝑠𝑡 ,𝑎)
∑

𝑎𝑖∈𝐴 𝑒𝛽𝑾 (𝑠𝑡 ,𝑎𝑖)
(6)

𝜋𝑡 = 𝑤𝜋𝑊𝑀
𝑡 + (1 −𝑤)𝜋𝑅𝐿

𝑡 (7)

where 𝛽 ∈ [0,∞) represents the inverse softmax temperature and 
𝑤 ∈ [0, 1] approximates how much working memory contributes to the 
eventual decision. This value is determined by two free parameters, the
working memory capacity (i.e., resource limit) 𝐾 ∈ [2, 5], and the
initial working memory weight 𝜌 ∈ [0, 1], 
𝑤 = 𝜌 ∗ 𝑚𝑖𝑛

(

1, 𝐾
|𝐴|

)

(8)

This equation can be interpreted as the weight given to the working 
memory module is reduced if the set size exceeds working memory 
capacity 𝐾, in proportion to the ratio of items that can be held in 
working memory.

Finally, un-directed decision noise (𝜖 ∈ [0, 1]) is added to the final 
weighted policy (𝜋) to capture potential noise during choice (action 
retrieval), 
𝜋𝑡 ← 𝜖

( 1
|𝐴|

)

+ (1 − 𝜖)𝜋𝑡 (9)

2.5. Modeling procedure

The modeling followed five steps: model fitting, model comparison, 
parameter recovery, model recovery, and model simulation and valida-
tion (Wilson & Collins, 2019). Models were fit to participants’ choices 
using maximum likelihood estimation, by minimizing the negative log 
likelihood using the MATLAB fmincon function. Parameter constraints 
were defined as follows: 𝛼, 𝛾, 𝛼−, 𝜌, 𝜖,∈ [0, 1] and 𝐶 ∈ [2, 5]. Initial 
parameter values were randomized within their constraints across fit-
ting iterations. Inverse temperature 𝛽 was fixed at 100 for all fits 
and simulations, reflecting optimal parameter recovery results from 
previous work using this model (Master et al., 2020). Each subject was 
fit over 100 iterations to avoid local minima in parameter values. Single 
task and dual task blocks were fit separately to examine the effects of 
dual-tasking on the fitted model parameters.

Model simulation and validation were performed to ensure that the 
model’s key parameter value correlates with key behavioral features of 
the data and that the models’ learning behavior reproduces a qualita-
tive pattern similar to that of human participants. Model simulations 
were conducted by simulating the model using each participant’s best-
fit parameters and their actual observed sequence of stimuli and blocks. 
Model simulations were performed 100 times per subject and averaged.
5 
3. Results

3.1. Dual-task performance

We first sought to validate the dual-task manipulation by checking 
that participants performed well in the secondary task. Indeed, par-
ticipants on average made correct choices in 81.0% of trials of the 
number task correct (𝑆𝐸 = 0.013) in the task-overlap condition of 
experiment 1, 81.0% correct (𝑆𝐸 = 0.016) in experiment 2, and 82.7% 
correct (𝑆𝐸 = 0.013) in experiment 3, well above chance level (50%). 
Participants also obtained an accuracy of 82.9% (𝑆𝐸 = 0.015) in the 
task-switch condition in experiment 3. The number task accuracy of 
the two conditions in experiment 3 did not significantly differ from 
each other according to the Wilcoxon test (𝑈 = 559, 𝑝 = 0.858). The 
number task accuracy and reaction time in the Task-overlap condition 
across all experiments did not depend on the congruency (whether the 
number larger in value was also larger in font size) of the numbers 
(𝑈 = 636, 𝑝 = 0.243;𝑈 = 459, 𝑝 = 0.278). However, in the Task-switch 
condition in experiment 3, we did observe that participants were more 
accurate (𝑈 = 998, 𝑝 < 0.001) and reacted faster (𝑈 = 277, 𝑝 < 0.001) in 
the congruent condition. This suggests that the congruency effect only 
holds if participants looked at the numbers while doing the number 
task, but not when they had to hold the two numbers in memory during 
the learning trial and then responded to the number task question. 
Congruency also did not impact the accuracy of the learning task (𝑈 >
530, 𝑝 > 0.9) or the reaction time of the learning task (𝑈 > 530, 𝑝 > 0.7). 
This indicates that the recruitment of inhibitory control did not impact 
reward learning.

Next, we checked the overall impact on accuracy in learning across 
conditions and experiments. We also compared differences in accuracy 
between conditions (Task-overlap vs. Control) across the 3 experiments. 
These differences capture the negative impact dual tasking had on 
learning performance. We found that the average difference in accuracy 
(capturing the effect of dual task) in experiment 1 was significantly 
greater than that in experiment 2 (0.180 vs. 0.126, 𝑈 = 326, 𝑝 = 0.047). 
This could be because the elongated inter-trial interval in experiment 
1 made the Single-task condition easier (Fig.  2). Indeed, Wilcoxon test 
showed that the accuracy in the Single-Task condition was higher in 
experiment 1 than in experiment 2 (𝑈 = 652.5, 𝑝 = 0.016).

To investigate whether task-switching, in the absence of dual-task, 
also impacted performance, we calculated the average difference in 
accuracy between the Task-switch and Task-overlap conditions in ex-
periment 3. This difference was significantly different from 0 (0.074; 
𝑈 = 44, 𝑝 < 0.001), indicating that the dual-task had a unique im-
pact beyond task switching. However, the difference was significantly 
smaller than the average difference in accuracy in experiment 1 and in 
experiment 2 (𝑈 = 343; 179, 𝑝 = 0.047; 𝑝 < .001). Because the dual-task 
condition in experiment 1 and 2 were the same condition as the Task-
overlap condition in experiment 3, this effect can only be explained by 
the fact that participants performed worse in the Task-switch condition 
in experiment 3, compared to the single-task condition in experiment 1 
and 2. This illustrates a cost to task-switching vs. single task. Through a 
more direct comparison, we indeed found that participants performed 
worse in the Task-Switch condition in experiment 3 compared to the 
Single-Task conditions in experiment 1 and 2 (𝑈 = 870.5, 752.5; 𝑝 <
0.001, 𝑝 = 0.002).

3.2. Learning phase

We next sought to more carefully characterize condition and experi-
ment effects using two-way ANOVA (see methods). Participants showed 
clear evidence of learning the stimulus–response mappings across all 
conditions. The probability of selecting the correct action increased 
with the number of stimulus appearances (Fig.  2). Furthermore, learn-
ing was markedly weaker in the task-overlap condition than in the 
single-task condition in experiments 1 (𝐹 (1, 180) = 86.27, 𝑝 < 0.001) 
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Fig. 2. (A) Learning Curves: Participants learned stimulus–response associations over time, with significant effects of set size, experiment, and condition. Curves reflect the 
proportion of correct responses as a function of the number of times that each stimulus was presented, plotted separately for each set size and condition. (B) Model validation: 
the RLWM model captures well the overall proportion of correct choices across experiment, condition, and set size effects. Error bars reflect the standard error of the mean.
and 2 (𝐹 (1, 180) = 34.80, 𝑝 < 0.001) and the task-switch condition in 
experiment 3 (𝐹 (1, 192) = 9.655, 𝑝 = 0.002) .

Regression analysis results confirmed that participants used both 
working memory and reinforcement learning processes to solve the 
task. Indeed, if working memory was recruited in this task, increas-
ing the set size should decrease performance because holding more 
stimulus–response associations in mind across trials should make learn-
ing harder. We also analyzed the effect of cumulative reward for each 
stimulus in the regression model, obtained by adding all the points 
rewarded to each stimulus up to each trial. If reinforcement learning 
is incrementally increasing the value of the correct action associated 
with each stimulus, then performance should increase with the number 
of previous trials in which a stimulus has been rewarded. Replicating 
previous results (Collins et al., 2017a; Collins & Frank, 2012), we 
observed both a significant negative effect of set size on performance 
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in experiment 1 (𝛽 = −0.175, 𝜒2(5) = 25.433, 𝑝 < 0.001), experiment 
2 (𝛽 = −0.288, 𝜒2(5) = 63.784, 𝑝 < 0.001), and experiment 3 (𝛽 =
−0.174, 𝜒2(5) = 33.075, 𝑝 < 0.001), as well as a significant positive 
effect of cumulative reward on performance also in experiment 1 (𝛽 =
0.874, 𝜒2(5) = 478.120, 𝑝 < 0.001), experiment 2 (𝛽 = 0.836, 𝜒2(5) =
419.443, 𝑝 < 0.001), and experiment 3 (𝛽 = 0.821, 𝜒2(5) = 568.759, 𝑝 <
0.001), likely reflecting, respectively, the influences of working memory 
load and trial-by-trial reinforcement learning in this task (Fig.  2).

The regression model also tested the effect of ‘‘delay’’ on perfor-
mance, captured by the number of trials passed since the last time 
a particular stimulus was observed and correctly responded to. We 
observed a significant negative effect of trial-based delay in exper-
iment 1 (𝛽 = −0.363, 𝜒2(5) = 153.088, 𝑝 < 0.001), experiment 2 
(𝛽 = −0.399, 𝜒2(5) = 167.838, 𝑝 < 0.001), and experiment 3 (𝛽 =
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Fig. 3. (A): The difference in testing phase accuracy: each dot represents the average accuracy of a participant in the Task-Overlap condition minus that in the control condition. 
The diamond represents the mean of the average difference in accuracy. This shows that accuracy in testing phase was consistently lower in the task-overlap condition. (B): Change 
in accuracy: each point shows the mean value of the difference between the testing phase accuracy and the average accuracy of the last three (corresponding) learning trials. The 
difference in accuracy was not lower in the task-overlap condition, suggesting an impairment of the reinforcement learning system. Error bars reflect the standard error of the 
mean in both plots.
−0.366, 𝜒2(5) = 161.038, 𝑝 < 0.001), suggesting that short-term forget-
ting occurs during the task (a result which is also consistent with the 
recruitment of working memory).

Finally, the regression results allowed us to consider dual task-
overlap effects (Fig.  2). Consistent with our predictions, we observed 
a significant effect of condition in experiment 1 (𝛽 = −0.605, 𝜒2(5) =
313.310, 𝑝 < 0.001), experiment 2 (𝛽 = −0.442, 𝜒2(5) = 176.374, 𝑝 <
0.001), and experiment 3 (𝛽 = −0.188, 𝜒2(5) = 49.701, 𝑝 < 0.001). Partic-
ipants performed worse on the learning task in the Task-Overlap condi-
tion versus the Single-Task and Task-Switch condition. This result sup-
ports our prediction that performing the secondary task while concur-
rently retrieving and/or integrating reward feedback of the stimulus–
response associations (Task-Overlap) had a stronger negative effect on 
learning relative to a situation where the secondary task is performed 
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in between trials (Task-Switch) or relative to a situation where no 
secondary task was performed. Thus, actively maintaining information 
in WM affected instrumental learning performance.

3.3. Testing phase

The asymptotic rate of learning performance, as expected, positively 
predicted the performance in the testing phase in experiment 1 (𝛽 =
0.755, 𝜒2(4) = 354.452, 𝑝 < 0.001), experiment 2 (𝛽 = 0.781, 𝜒2(4) =
380.872, 𝑝 < 0.001), and experiment 3 (𝛽 = 0.908, 𝜒2(4) = 528.983, 𝑝 <
0.001). This result gives more assurance that participants perform better 
on trials with stimuli that were well learned in the learning phase.

Next, we observed a significant positive effect of set size in exper-
iment 1 (𝛽 = 0.179, 𝜒2(4) = 18.605, 𝑝 < 0.001), experiment 2 (𝛽 =
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Fig. 4. The difference in fitted parameter values between the Task-Overlap condition and the control condition: the learning rate of the reinforcement learning module (𝛼) was 
consistently lower in the Task-Overlap condition, suggesting that dual-tasking impaired the reinforcement learning system. Outlier |𝛥𝛼| > 0.2 was removed for better visualization 
but included in the statistics reported. Error bars reflect the standard error of the mean. **: p < 0.01, ***: p < 0.001.
0.192, 𝜒2(4) = 21.247, 𝑝 < 0.001), and experiment 3 (𝛽 = 0.161, 𝜒2(4) =
17.154, 𝑝 < 0.001; Fig.  3). This finding replicates seemingly counter-
intuitive previous findings (Collins, 2018): That is, this result suggests 
that when set size is low and working memory is contributing the 
lion’s share to learning, long term retention of stimulus-action asso-
ciations is actually hindered; conversely, when the set size is higher 
and reinforcement learning contributes more to learning, long-term 
retention is improved (even after controlling for asymptotic perfor-
mance). Thus, the testing phase may act as a proxy for the strength of 
stimulus–response associations learned via the reinforcement learning 
system.

For the same reason, we might expect participants to potentially 
perform better in the testing phase on stimuli from the Dual-Task 
condition where working memory is directly taxed, assuming that the 
two systems (WM and RL) are competing. Contrary to this expectation, 
however, we found that participants performed worse in the testing 
phase on trials with stimuli from the Task-Overlap condition in ex-
periment 1 (𝛽 = −0.304, 𝜒2(4) = 43.395, 𝑝 < 0.001) and experiment 2 
(𝛽 = −0.262, 𝜒2(4) = 35.184, 𝑝 < 0.001). In experiment 3, participants 
performed worse on trials with stimuli from the Task-Overlap condition 
than the Task-Switch condition (𝛽 = −0.142, 𝜒2(4) = 13.466, 𝑝 < 0.001). 
This suggests that the effects of the condition we saw in the learning 
phase are not simply an effect on choices but actually on how well 
participants learned (Fig.  3). Otherwise, we would not see a condition-
level effect on accuracy in the testing phase but only in the learning 
phase. This result also implies that directly blocking working memory 
seems to impair the performance of the reinforcement learning system 
as well, leading to decreased accuracy of testing phase responses.

Finally, we investigated the difference between the accuracy in 
the testing phase and the average accuracy of the last 3 trials of the 
learning phase (Fig.  3). We ran a linear mixed-effect regression on the 
difference in average accuracy with the following predictors: condition,
set size, and their interaction term. While we replicated the previous 
finding (Collins, 2018) that the set size had a significant positive effect 
in experiment 1 (𝛽 = 0.272, 𝜒2(5) = 16.035, 𝑝 < 0.001), experiment 
2 (𝛽 = 0.242, 𝜒2(5) = 14.285, 𝑝 < 0.001), and experiment 3 (𝛽 =
0.249, 𝜒2(5) = 12.960, 𝑝 < 0.001), we did not see a significant effect 
of condition (𝜒2(5) < 1.874, 𝑝 > 0.171). This suggests that while the 
dual-task manipulation decreased participants’ learning of the reward 
mapping, it did not affect the decay rate of the learning outcome.
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3.4. Computational modeling results

To directly investigate the mechanisms leading to condition and 
experiment effects, we next turned to RLWM modeling. We first looked 
at the model parameters we computed as a result of model fitting (Fig. 
4). In both experiment 1 and experiment 2, we observed a significant 
difference between the Dual-Task and Single-Task conditions in the 
reinforcement learning rate 𝛼 (Exp 1 𝑈 = 71, 𝑝 < 0.001; Exp 2 𝑈 =
71, 𝑝 < 0.001), learning bias 𝛼− (Exp 1 𝑈 = 101, 𝑝 = 0.003; Exp 2 
𝑈 = 80, 𝑝 < 0.001), forgetting 𝛾 (Exp 1 𝑈 = 433, 𝑝 < 0.001; Exp 
2 𝑈 = 460, 𝑝 < 0.001) and basis working memory weight 𝜌 (Exp 1 
𝑈 = 92, 𝑝 = 0.002; Exp 2 𝑈 = 47, 𝑝 < 0.001). The fact that the 
dual-task manipulation did not have a significant effect on the 𝜖 noise 
parameter argues against the possibility that the effect of dual-tasking 
simply increased the noise of value-based choice without substantively 
impacting any executive function. Rather these results strongly suggest 
that dual-task manipulations during instrumental learning effectively 
interfere with both working memory itself, as suggested by decades of 
dual-task work, but also a putatively lower-level reinforcement learning 
system.

Interestingly, in Experiment 3, the only parameter value that signif-
icantly differed between the Task-Overlap and Task-Switch conditions 
was the reinforcement learning rate 𝛼 (𝑈 = 69, 𝑝 < 0.001). This 
result indicates that any dual task – whether it is one that is toggled 
between trials of learning or one that requires simultaneous memory 
maintenance during choice and updating – appears to hinder the rein-
forcement learning component of instrumental learning. On the other 
hand, the timing at which the extra memory load is imposed during 
dual-tasking appears to determine the severity of the dual-task effect on 
the reinforcement learning system. If the extra memory load is imposed 
during the value encoding stage of learning, as was the case in the Task-
Overlap condition and all dual-task conditions in Experiments 1 and 2, 
we see a heightened hindrance of the reinforcement learning system.

4. Discussion

Many lines of evidence point to distinct processes contributing to 
instrumental learning (Collins & Frank, 2012; Daw, Gershman, Sey-
mour, Dayan, & Dolan, 2011; Lee, Seo, & Jung, 2012). We have 
recently suggested that two of the processes, working memory (WM) 
and cortico-striatal reinforcement learning (RL), can be teased apart us-
ing specific task designs and computational modeling methods (Collins, 
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2018; Collins & Frank, 2012). One of the large gaps in this framework 
concerns the interaction of these two systems: whether one functionally 
depends on another. Our work here provides evidence that the RL sys-
tem indeed depends on executive functions, because perturbing execu-
tive functions experimentally through the dual-task paradigm (Econo-
mides et al., 2015; Jiménez & Vázquez, 2005; Liefooghe, Barrouillet, 
Vandierendonck, & Camos, 2008) led to worse learning outcomes in 
the RL system, even after controlling for direct contributions of WM 
to learning. We isolated the RL system using both an experimental 
method, by introducing a test phase after the learning phase, as well as 
through the ‘‘RLWM’’ model, which has shown to dissociate separate 
contributions of WM and RL to instrumental learning (Collins, 2018).

The first main finding was that under the dual-task conditions, 
participants performed significantly worse in the testing phase, where 
performance depended more on information encoded in the RL system. 
Through modeling, we also found a clear effect of dual-tasking on the 
learning rate of the reinforcement learning system (Fig.  4). That a tax 
on executive function would directly disrupt the primary parameter 
of the (putatively implicit, ‘‘lower-level’’) RL system is novel in our 
view, and may point to a deeper connection between executive function 
and RL than normally assumed (Rmus et al., 2021). We note that an 
alternative prediction could have been that the dual-task would disrupt 
the choice process itself, as opposed to learning-related processes. If 
that were the case, we would expect the noise (𝜖) parameter to be 
higher under dual-tasking, which we did not observe (Fig.  4). This 
further supports our interpretation that the dual-task interfered with 
learning computations, rather than choice per se.

Zooming out, we can interpret this result as an indication that 
working memory does not merely function as a separate storage system 
that works in parallel with the reinforcement learning system. If that 
were the case, we would expect taxing the executive function through 
dual-tasking to only disrupt the WM module while leaving the RL 
module unaffected. The fact that we found broader effects of the dual-
task adds further support to the idea that there is a close dependency 
between WM and RL, as suggested in a recent similar study (Collins 
& Frank, 2018). We note that the dual-task paradigm does not allow 
us to directly speak to which specific component of executive function 
was responsible for the impairment of the RL system. We have a few 
speculations about why such an impairment occurs. One hypothesis 
would be that greater noise in prefrontal representations, as expected 
from the addition of load, affects basic RL computations, for instance by 
disrupting ‘‘eligibility traces’’ that could be used to glue together states, 
actions, and rewards (Curtis & Lee, 2010) on short timescales. An-
other hypothesis is that some kind of explicit, internal verbal rehearsal 
process is being used by subjects in our task (Gershman, Markman, 
& Otto, 2014), and that this process is disrupted or even blocked by 
the dual-task used in Experiments 1 and 2. Future work could use less 
verbalizable symbols in the dual-task to help tease out a role for verbal 
rehearsal here (Yoo et al., 2023).

Our results also speak to some of the basic interpretations behind 
dual-tasking – dual-task manipulations are often thought to be useful 
tools for singularly taxing executive functions like attention and work-
ing memory, while sparing other (often sub-cortically linked) more 
implicit processes (Cohen, Ivry, & Keele, 1990; Otto, Taylor, & Mark-
man, 2011; Vallesi, Arbula, & Bernardis, 2014; Zeithamova & Maddox, 
2006). While this general framework is useful and well-replicated, 
our results here complicate these assumptions somewhat, at least in 
the domain of instrumental learning. By showing that dual-tasking 
significantly disrupted a putatively non-cognitive RL system, we chal-
lenge the idea that dual-tasks leave implicit learning untouched (Rmus 
et al., 2021). Our findings may also have useful implications in more 
applied domains. For example in education, our findings suggest that 
factors that disturb executive functions (such as multi-tasking) may also 
impair more implicit learning mechanisms, like RL. In computational 
psychiatry, our findings highlight the difficulty of mapping mental 
disorders to specific sub-components of learning due to their mutual 
9 
dependency. Overall, our findings point to a more general principle 
– seemingly distinct learning systems may often be at least somewhat 
intertwined, suggesting a more interactive approach to understanding 
learning (Collins & Frank, 2018; Fischer, Drosopoulos, Tsen, & Born, 
2006; McDougle, Ivry, & Taylor, 2016).
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