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How automatic is reinforcement learning (RL)? Here, using a recent computational framework that separates
contributions from working memory versus RL during instrumental learning, we asked if taxing higher
executive functions influences a putatively lower-level, procedural RL system. Across three experiments, we
found that dual-tasking could indeed disrupt RL, even when isolating RL from working memory’s contributions
to behavior. These results speak to methodological considerations in the use of dual tasks during learning,
suggesting that cognitive load can interfere with multiple learning and memory systems simultaneously.
Moreover, our results point to a less constrained conception of RL as a putatively low-level procedural system,
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supporting a view that tight links exist between executive function and subcortical learning processes.

1. Introduction

The study of instrumental learning (learning to select actions that
lead to rewards) typically focuses on the reinforcement learning pro-
cess (RL), which is well captured by a computational framework
that formalizes reward as a teaching signal to estimate expected val-
ues (Rescorla, 1972; Sutton & Barto, 1998). Although RL is a powerful
learning system, human beings also utilize higher-level executive func-
tions during instrumental learning tasks, such as working memory
(WM) and attention. A growing body of research suggests that executive
functions like working memory and attention shape the learning of
simple instrumental policies alongside reinforcement learning (Collins
& Frank, 2012; Leong, Radulescu, Daniel, DeWoskin, & Niv, 2017;
Rmus, McDougle, & Collins, 2021; Yoo & Collins, 2022). Executive
functions typically require top-down cognitive control, process in-
formation explicitly, and operate on a shorter time span, whereas
reinforcement learning operates more implicitly, and over a longer
time span (Collins, 2018). For example, executive functions could aid
instrumental learning by directing attention to relevant reward signals
and contextual cues, and encode these sources of information explicitly
in working memory (such as explicitly remembering that one action
yielded a reward but another action did not). Due to the intrinsic
capacity limitations of working memory, however, people are unlikely
to be able to explicitly remember sufficient information about reward-
action contingencies over longer periods of time. Nevertheless, even
without explicit memory, people are still able to implicitly learn to

choose more rewarding actions over less rewarding ones (Cortese, Lau,
& Kawato, 2020; Gabrieli, 1998; Pessiglione et al., 2008; Shohamy,
2011; Wilkinson & Jahanshahi, 2007), as demonstrated, for example,
by their ability to learn more information than can be held in work-
ing memory (Collins & Frank, 2012). This phenomenon is typically
attributed to the reinforcement learning (RL) process.

Across various populations, studies have shown that working mem-
ory and reinforcement learning indeed operate in parallel during simple
instrumental learning tasks, and compete for action control (Collins &
Frank, 2012; Master et al., 2020; Viejo, Khamassi, Brovelli, & Girard,
2015). These findings can be formalized in computational models that
include both RL and WM — such models are designed to capture
human behavioral and neural data in simple instrumental learning
contexts (Collins, Ciullo, Frank, & Badre, 2017a; Collins & Frank, 2018;
Viejo et al., 2015).

While it is clear that both WM and RL can contribute to human
reward learning, what is poorly understood, however, is whether rein-
forcement learning processes are functionally independent of executive
functions, or if the two systems interact with each other. Past research
has typically framed RL as a closed-loop, lower-level process that does
not strongly rely on higher-level cognitive inputs. That is, RL is often
thought of as being a procedural learning system. However, recent
research has challenged this view by suggesting multiple ways in which
RL computations appear to be tightly linked to executive functions,
including attention (Leong et al., 2017; Niv et al., 2015), abstract
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motivational goals (McDougle, Ballard, Baribault, Bishop, & Collins,
2021; Sinclair, Wang, & Adcock, 2023), and working memory (Collins,
2018; Collins, Ciullo, Frank, & Badre, 2017b; Collins & Frank, 2018;
Rmus et al., 2021; Yoo & Collins, 2022). To our knowledge, minimal
prior work has applied causal experimental tests on links between
executive functions and reinforcement learning processes that perturb
executive function while also measuring its direct contributions to
learning. Without doing so, it is difficult to know if perturbing an
executive function (e.g., WM) during learning simply disrupts that
specific function’s contributions to behavior, or if ‘downstream’ effects
on the RL system are also induced. If executive functions contribute
to instrumental learning independently, taxing them would not impact
the reinforcement learning process, and indeed only impact learning
behavior through executive function’s contributions themselves. On the
other hand, if RL is not fully separable from parallel executive func-
tion contributions to learning, perturbing executive functions should
additionally impact the reinforcement learning process. This impact on
RL could be either facilitating (leading to faster learning of rewarding
actions) or inhibitory (leading to slower learning).

In three experiments, we tested these hypotheses by directly per-
turbing executive functions using a classic ‘“dual-task” manipulation
during an instrumental learning paradigm that is optimized to disen-
tangle RL from WM. Dual-tasks are a common procedure for taxing
executive function and have been deployed across a range of cog-
nitive and learning tasks (Baddeley, 1992; D’Esposito et al., 1995;
Economides, Kurth-Nelson, Liibbert, Guitart-Masip, & Dolan, 2015).
We designed two “dual-task” conditions which only differed in when
the dual task occurred within the flow of the experiment: “Task-
Overlap” and “Task-Switch”. The “Task-Overlap” condition directly
taxed executive function by presenting extra information for the par-
ticipant to remember while simultaneously performing the learning
task. The “Task-Switch” condition freed participants from any extra
working memory load during the choice and feedback process, but
required them to engage in the recruitment of executive functions
between learning trials. We performed 3 experiments: In the first 2,
we compared the (standard) Single-Task condition with the “Task-
Overlap” condition, and varied the single-task inter-trial interval across
experiments to control for timing differences between single- and dual-
task settings (see Methods). In the third experiment, we compared
the “Task-Overlap” condition and the “Task-Switch” condition to each
other.

Our overarching goal was to use a computational modeling frame-
work (the “RLWM” model) that captures reward learning behavior with
separable WM and RL modules (Collins & Frank, 2012), to examine how
taxing executive function through a dual task might affect different sub-
components of instrumental learning. The “RLWM” model was crucial
for testing the effect of perturbing executive functions on reinforce-
ment learning, as behavioral data alone (such as average accuracy
metrics) can depend on both mechanisms. All experiment materials,
data, and analysis code are publicly available at https://osf.io/zutka/
?view_only=865528e02ce7435ab12e05390e427¢e7a.

2. Methods
2.1. Participants

Participants in all three experiments (N1 = 31, N2 = 31, N3 = 33)
were recruited through the University of California Berkeley’s SONA
platform and earned class credit for their participation. In experiment
1, 21 females and 10 males participated with a mean age of 20.47. In
experiment 2, 17 females and 14 males participated with a mean age
of 21.32. In experiment 3, 26 females and 7 males participated with a
mean age of 21.43. No participants were excluded. The experimental
protocol was approved by the university’s local ethics committee. Writ-
ten, informed consent was obtained from all participants prior to their
participation.
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2.2. Experimental procedure

2.2.1. Experiment 1

Participants were seated in front of a computer monitor and had
their hands comfortably positioned on a computer keyboard. They
then proceeded to the main experiment which was a computerized
task written using Psychtoolbox (version 3.0.10) on Matlab (version
R2016a). The main goal for the participants was to learn which key
(out of 3 candidate keys) on the keyboard was associated with each
stimulus presented on the screen. We used images from Collins et al.
(2017a) as stimuli in our task.

After instruction and practice (designed to familiarize the partici-
pant with the task), the task had two phases: learning, and testing. In
the learning phase, participants attempted to learn multiple stimulus—
response pairs in separate, independent blocks. In the testing phase,
all stimuli from all learning phase blocks were displayed again in
a random sequence, and participants responded but did not receive
correct/incorrect feedback, allowing us to probe long-term retention of
learned information, independent of WM.

The learning phase (Fig. 1) consisted of 10 independent blocks of
trials, but the last block only served as a buffer between the learning
and the testing phase and thus was excluded from later analyses. In
each trial, participants saw an image presented on the screen and
pressed one of the three keys in response. A block consisted of either
2, 3, or 6 image-key associations to learn and 12 iterations per image,
pseudo-randomly interleaved to control for an approximately uniform
distribution of delays between iterations of the same stimulus. Each
block used a separate set of images to be learned, consisting of easily
distinguished and named examplars of a category (e.g. vegetables, farm
animals, etc. Yoo, Keglovits, and Collins (2023)). At the beginning of
each block, participants saw all the images that they would encounter
in that block for familiarization. Across blocks, the set size of the
instrumental learning task was varied among 2, 3, and 6 (Collins &
Frank, 2012). That is, in each block participants had to either learn 2,
3, or 6 stimulus-response associations, a manipulation that is critical to
delineating WM and RL in our modeling framework (Collins & Frank,
2012). Stimuli were never repeated across blocks. The learning phase
also included two conditions: Dual-Task and Single-Task, across blocks.
In the Dual-Task condition, two blocks were performed at each set size,
and in the Single-Task condition, one block was performed each at set
sizes 3 and 6, and two blocks at set size 2. The block order was pseudo-
randomized except the last (10th) block. The last block, which was used
as a buffer, always had set size 2 and trials in the Single-Task condition.

In the Dual-Task condition, a secondary task — the number judg-
ment task — was performed in addition to the instrumental learning
task (Economides et al., 2015). For this task, two numbers were si-
multaneously displayed side-by-side with varying font sizes and integer
values (e.g., a large font “2” on the left and a smaller font “6” on
the right). Participants were asked to make either a ‘“size” or “value”
judgment of the number stimuli by pressing a key that corresponded
to the position of either the visually larger number (e.g., “2”, or left
button) or the higher-value number (e.g., “6”, right button; Fig. 1) . The
particular judgment required (value versus size) was randomly selected
on each trial. Approximately 80% of trials consisted of conflict trials,
where the visually larger integer was smaller in value and vice-versa.
The specific two integers presented were drawn randomly from [0, 9]
without replacement.

In Dual-Task blocks, the trial structure was as follows: Participants
viewed one of the learning stimuli on the screen and two numbers
positioned above the stimulus (Fig. 1). The numbers were displayed for
0.3 s. The learning stimulus was continually displayed either until the
participant responded with one of the three possible actions (*j”, “k”, or
“1” with their right index, middle, or ring finger), or if 1.5 s had elapsed.
If the response designated as correct for that stimulus was made, +1
“points” were displayed on the screen. If an incorrect response was
given, 0 points were displayed. If the reaction time exceeded 1.5 s, the
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Exp1 Single-Task block

ﬁ

1s
4.5s-reaction time

Task-Overlap block

1s

1.5s-reaction time

Testing phase

1.5s or key press
1.5s or key press

Fig. 1. Task Design: (A) Block structure of the learning phase (all experiments): Participants performed 10 independent blocks of the instrumental learning task. The 10th block
served only as a buffer between the learning and testing phase. Thus it was removed from all analyses. Participants saw a display of all possible stimuli in the block at the beginning
of each block. (B, C) Single-Task blocks (experiment 1 and 2): regular instrumental learning task, each controlling for the total trial duration (B) or the inter-trial interval (C).
(D) Main dual-task manipulation: Task-Overlap blocks (all experiments): participants had to remember the two numbers presented concurrently with the stimulus. After making
a stimulus-dependent key-press (e.g. here L), and obtaining feedback (here a correct +1), participants were asked to perform a size or value judgment based on the remembered
numbers. (E) Task-Switch blocks (experiment 3): the two numbers for the secondary task were presented after participants received the trial’s feedback, such that participants did
not have to remember the two numbers but only needed to judge the numbers between learning trials. (F) Testing phase (all experiments): Each image repeated four times at

randomized places in the sequence. No feedback was given.

message ‘“‘please respond faster” was displayed, and if the response was
faster than 0.15 s the message “too fast” was displayed. The feedback
to the instrumental learning task was displayed for 1 s. Critically, after
receiving feedback for the instrumental learning task, the participant
was then asked to make either a “size” or “value” judgment of the
previously-displayed numbers (“a” or “d” with their left ring and index
fingers, corresponding to the number displayed on the left or right,
respectively). Participants had up to 1 s to respond to the number
judgment task, but if they responded in less than 1 s, they would
still need to wait until the end of the second before seeing feedback.
Feedback was then given for the number judgment task (“correct”,
“incorrect”, “please respond faster”, or “too fast”) and was displayed
for 1 s as well. An inter-trial interval of 1.5 s (minus the reaction time
of the instrumental learning task) then occurred, which consisted of a
white fixation cross displayed in the center of the screen. The interval
was computed as such to control for the total trial duration. Therefore
the total trial duration was 4.5 s.

In Single-Task blocks, participants did not need to perform the
number judgment task, but only needed to perform the instrumental
learning task. Therefore, there was no number displayed above the
learning stimulus and there was no question about the numbers fol-
lowing the feedback for the instrumental learning task. To ensure that
the total trial length was the same as in the Dual-Task condition, the
inter-trial interval was 3.5 s minus the reaction time.

To become familiarized with the tasks, participants performed the
practice phase with three unique practice rounds before the learning
blocks began: They first practiced the instrumental learning task on
its own (10 trials), followed by the “number judgment” secondary
task on its own (10 trials), then the Dual-task condition (10 trials).
Experimenter instructions emphasized that participants should focus on
performing equally well on both tasks in all blocks.

After the learning phase, participants proceeded to perform a sur-
prise testing phase. In the testing phase, the screen first displayed
the instruction telling them that they would see images that they had
encountered previously and that they needed to respond by retrieving
the action that they originally learned was correct for that image (j,
k, or 1 key). Similar to the learning phase, participants’ response to a

trial was valid if made between 0.15 and 1.5 s from the onset of the
image. Unlike in the learning phase, however, no feedback followed
their actions and there was no inter-trial interval. The testing phase was
not divided into blocks, and all the images in the learning block were
shuffled and presented in sequence at the center of the screen. Each
image appeared four times in total in this shuffled sequence. The testing
phase was included to provide a measure of long-term associations
formed through RL, without immediate contributions from working
memory processes (contrary to the learning phase where information
was available within a short time frame). Because the information
encoded in the RL system is retained for a longer period of time than the
information encoded in working memory, we can attribute participants’
performance in the testing phase more to the learning outcome of the
RL system (Collins, 2018).

2.2.2. Experiment 2

While experiment 1 controlled for the total trial duration between
the Single-Task and the Dual-Task condition, the inter-trial intervals
in the Single-Task condition were substantially longer than in the
Dual-Task condition, potentially introducing a confound. In experiment
2, we instead controlled for the inter-trial interval between the two
conditions. Experiment 2 (Fig. 1) was identical to experiment 1 except
that the inter-trial interval in the Single-Task condition was the same
as the inter-trial interval in the Dual-Task condition, which was 1.5 s
minus the reaction time. Therefore, unlike in Experiment 1, where the
total trial duration was the same between the two conditions, the trial
duration of the Single-Task condition was shorter than the trial duration
of the Dual-Task condition in Experiment 2.

2.2.3. Experiment 3

While the previous 2 experiments controlled for the differences in
inter-trial interval and trial duration, they could not identify whether
the potential Dual-Task effect comes from simply having to switch tasks
during learning, or from having to hold two numbers in memory while
making decisions. To disentangle these two possibilities, we designed
experiment 3 (Fig. 1).
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The learning phase of experiment 3 did not have Single-Task con-
ditions, but instead, it consisted of 2 different Dual-Task conditions:
Task-Overlap and Task-Switch. The Task-Overlap condition is exactly the
same as the Dual-Task condition in experiments 1 and 2. Thus, in Task-
Overlap blocks, the number task and instrumental task were performed
simultaneously — the number sizes and values had to be encoded and
maintained while the correct stimulus-response association was being
learned and/or retrieved. In contrast, in Task-Switch blocks, the same
two tasks were performed but in succession — a complete trial of the
instrumental learning task was performed (learning stimulus, response,
feedback), followed by a complete trial of the number judgment task
(number stimuli, response, feedback). In the instrumental learning task,
same as the Single-Task trials in experiments 1 and 2, participants
viewed one of the learning stimuli on the screen without the additional
two numbers above them. The learning stimulus was continually dis-
played either until the participant responded with a valid keypress, or if
1.5 s had elapsed. The feedback was then displayed for 1 s. After having
received feedback for the instrumental learning task, the participant
was then asked to make either a “size” or “value” judgment of two
numbers. Unlike in the Task-Overlap condition, the two numbers were
displayed right above the question, so participants could make the
judgment while looking at the two numbers. Participants had also up
to 1 s to respond to the number judgment task, but if they responded
less than 1 s, they would still need to wait until the end of the second
before seeing feedback. The feedback was displayed for 1 s as well.
The feedback mechanism for both the instrumental learning task and
the number task is the same as in experiments 1 and 2. Afterward, an
inter-trial interval of 1.5 s (minus the reaction time of the instrumental
learning task) occurred. The interval was computed as such to control
for equal total trial duration (4.5 s) across the two conditions.

In sum, the only difference between the Task-Switch and the Task-
Overlap condition was that in the Task-Overlap condition, the two
numbers appeared simultaneously with the instrumental task stimu-
lus for 0.3 s, and thus participants needed to hold these numbers
in memory during the instrumental learning task, but in the Task-
Switch condition participants did not need to hold them in memory
while performing the instrumental learning task. That is, the Task-
Switch condition was included to benchmark the global effects of taxing
executive function without requiring secondary task representations to
occupy working memory during the choice and feedback phases of the
instrumental task.

All other aspects of the experiment were largely the same as ex-
periments 1 and 2, replacing the Single-Task condition with the Task-
Switch condition and replacing the Dual-Task condition with the Task-
Overlap condition. Particularly, in the Task-Overlap condition, two
blocks were performed at each set size, and in the Task-Switch con-
dition, one block was performed each at set sizes 3 and 6, and two
blocks at set size 2. The last (10th) block always had a set size of 2
and trials in the Task-Switch condition, i.e., the easiest type of block,
serving as a buffer between the learning and the testing phase and
thus was excluded from all analyses. In the practice phase, participants
performed 10 more trials of Task-Switch tasks after the 10 trials of the
practice Task-Overlap trials.

2.3. Statistical analyses

All statistical analyses were done in R (version 4.3.1). To calculate
the standard error of the mean, we used the std.error function in the
plotrix package (version 3.8.2). To perform the Wilcoxon test, we used
the wilcox_test function in the rstatix package (version 0.7.2). To statis-
tically quantify the impact of different task variables on performance,
we performed a two-way ANOVA and a mixed-effect regression analysis.
To perform two-way ANOVA, we used the aov function. The dependent
variable was average accuracy. The independent variables included
were set size (3 levels: 2, 3, 6) and dual-task condition (2 levels: Task-
overlap vs. the control condition depending on the experiment) and
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the interaction term. The mean and standard deviation are reported
in supplemental table 1. To perform mixed-effect regression analysis,
we used the mixed function in package afex (version 1.3.0), with
model comparison method set to LRT, representing a likelihood ratio
test. All continuous variables were scaled before passing them into
the regression. We set the correct/incorrect responses as the outcome
variable and subject identification number as the random intercept. For
the learning phase data, we passed in four task variables as predictors:
condition, set size, delay (i.e., the number of intervening trials between
the current and previous viewings of a specific stimulus), and cumulative
reward (i.e., the number of successful trials with the current stimulus). For
the testing phase data, we passed in three task variables as predic-
tors of performance: condition, set size, and asymptotic learning phase
performance. We obtained the condition and set size of the stimuli
presented in the testing phase by referring to the condition and set
size those stimuli had belonged to during the preceding learning phase.
The asymptotic rate of performance for each stimulus was obtained by
computing the average correctness of the last 3 trials for that stimulus
from the learning phase.

2.4. The RLWM computational model

Here we present the details of the “RLWM” model architecture,
which functions as the basic foundation of our model-dependent analy-
ses (Collins & Frank, 2012). The model was designed to fit participants’
choices in this instrumental learning task, and capture simultaneous
contributions from working memory and reinforcement learning. Prior
work showed that this model outperforms alternative models that do
not include a hybrid RL + WM structure; indeed, other models could
not capture the patterns of behavior that reveal the dissociable contri-
butions of RL and WM on the performance in this instrumental learning
task, in particular the strong effects of set size on accuracy (Collins,
2018; Collins & Frank, 2012; Rac-Lubashevsky, Cremer, Collins, Frank,
& Schwabe, 2023; Rmus et al., 2023). Therefore we rely on the RLWM
computational framework to further examine the separate effects of
perturbing executive functions on the RL and the WM system.

The RLWM model models the learning of stimulus-action values
using a variant of a typical reinforcement learning model (Sutton &
Barto, 1998). The model relies on two main variables representing the
task environment. The first one is the state s € .S where .S represents the
full stimulus/state space within a block (i.e., all the possible images that
could appear). In our experiment, |.S| € {2,3,6}. The second variable
is the action a € A where A is the full action space (i.e., j, k, 1). In our
experiment, |A| = 3 because there were three possible buttons to press
as a response to the instrumental learning task. The algorithm proceeds
in two stages, as introduced in the introduction: the value updating
stage and the policy formation stage. In the value updating stage, for
stimulus s and action « on trial ¢, the model estimates an expected value
(i.e., the Q value) Q(s,, a,) by performing an update using the delta rule
(Eq. (2); Rescorla (1972)):

0,41(s1,9) = Qy(s;,9)) + s, @

6 =r,— Qs;,a) 2

where a represents the learning rate and Q, is a |S| x |A| matrix
encoding all Q values given a trial 7. Q is initialized as a uniform
matrix of ﬁ. § € [0,1] is the reward prediction error, and r €
{0,1} is the (binary) reward received. Critically, the model captures
the parallel recruitment of working memory (WM) and reinforcement
learning (RL) by training two simultaneous learning modules: The
reinforcement learning module is described by Eq. (1). The working
memory module is formally similar but has a learning rate of « = 1
(algebraically equivalent to Eq. (3)). Thus, the working memory delta
rule has perfect retention of the outcome of the previous trial with
stimulus s,, reflecting rapid learning of stimulus-response pairs that
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is qualitatively distinct from classic reinforcement learning. Working
memory is also vulnerable to forgetting (Posner & Keele, 1967): The
model captures trial-by-trial decay of stimulus-action weights W (Eq.

(4),
W (sa) =1, ()]

Wia=W. +yW,-W) (€3]

where y € [0, 1] is the forgetting parameter that draws all W weights
toward their initial values W, = Q,. The model also captures a
positive learning bias (i.e., the neglect of negative feedback) upon
negative prediction errors (i.e., 6 < 0). The learning rate « is reduced
multiplicatively: a~ % a where a~ € [0, 1] controls the learning bias
(higher values cause less bias toward positive feedback, and lower
values cause more). Learning bias occurs for both the reinforcement
learning and working memory modules; in the latter case, the perfect
learning rate of 1 is also scaled by a~.

In the policy formation stage, Q-values and W weights are trans-
formed by the Softmax function into a policy, i.e., a vector of probabili-
ties of taking each action. Separate working memory and reinforcement
learning policies (represented by row vectors )™ and zRL) are then
combined in the calculation of the final policy via a weighted sum (Eq.

(7)),

AL P0G1.a)
7, " = plals,) = Softmax(Q(s;, a), f) = ESEE— T %)
Za,EA e o
WL W (5,.0)
x" " = plals,) = Softmax(W (s,, a), f) = W (6)
a,€A !
T, = wzrtWM +(1 - w)frtRL 7

where f € [0,00) represents the inverse softmax temperature and
w € [0, 1] approximates how much working memory contributes to the
eventual decision. This value is determined by two free parameters, the
working memory capacity (i.e., resource limit) K € [2,5], and the
initial working memory weight p € [0, 1],

w:p*min(l,%) ®

This equation can be interpreted as the weight given to the working
memory module is reduced if the set size exceeds working memory
capacity K, in proportion to the ratio of items that can be held in
working memory.

Finally, un-directed decision noise (¢ € [0, 1]) is added to the final
weighted policy (z) to capture potential noise during choice (action
retrieval),

n:,<—e(|17|)+(1—e)7r, )

2.5. Modeling procedure

The modeling followed five steps: model fitting, model comparison,
parameter recovery, model recovery, and model simulation and valida-
tion (Wilson & Collins, 2019). Models were fit to participants’ choices
using maximum likelihood estimation, by minimizing the negative log
likelihood using the MATLAB fmincon function. Parameter constraints
were defined as follows: a,y,a7,p,e,€ [0,1] and C € [2,5]. Initial
parameter values were randomized within their constraints across fit-
ting iterations. Inverse temperature § was fixed at 100 for all fits
and simulations, reflecting optimal parameter recovery results from
previous work using this model (Master et al., 2020). Each subject was
fit over 100 iterations to avoid local minima in parameter values. Single
task and dual task blocks were fit separately to examine the effects of
dual-tasking on the fitted model parameters.

Model simulation and validation were performed to ensure that the
model’s key parameter value correlates with key behavioral features of
the data and that the models’ learning behavior reproduces a qualita-
tive pattern similar to that of human participants. Model simulations
were conducted by simulating the model using each participant’s best-
fit parameters and their actual observed sequence of stimuli and blocks.
Model simulations were performed 100 times per subject and averaged.
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3. Results
3.1. Dual-task performance

We first sought to validate the dual-task manipulation by checking
that participants performed well in the secondary task. Indeed, par-
ticipants on average made correct choices in 81.0% of trials of the
number task correct (SE = 0.013) in the task-overlap condition of
experiment 1, 81.0% correct (SE = 0.016) in experiment 2, and 82.7%
correct (SE = 0.013) in experiment 3, well above chance level (50%).
Participants also obtained an accuracy of 82.9% (SE = 0.015) in the
task-switch condition in experiment 3. The number task accuracy of
the two conditions in experiment 3 did not significantly differ from
each other according to the Wilcoxon test (U = 559,p = 0.858). The
number task accuracy and reaction time in the Task-overlap condition
across all experiments did not depend on the congruency (whether the
number larger in value was also larger in font size) of the numbers
(U = 636,p = 0.243;U = 459, p = 0.278). However, in the Task-switch
condition in experiment 3, we did observe that participants were more
accurate (U = 998, p < 0.001) and reacted faster (U = 277, p < 0.001) in
the congruent condition. This suggests that the congruency effect only
holds if participants looked at the numbers while doing the number
task, but not when they had to hold the two numbers in memory during
the learning trial and then responded to the number task question.
Congruency also did not impact the accuracy of the learning task (U >
530, p > 0.9) or the reaction time of the learning task (U > 530, p > 0.7).
This indicates that the recruitment of inhibitory control did not impact
reward learning.

Next, we checked the overall impact on accuracy in learning across
conditions and experiments. We also compared differences in accuracy
between conditions (Task-overlap vs. Control) across the 3 experiments.
These differences capture the negative impact dual tasking had on
learning performance. We found that the average difference in accuracy
(capturing the effect of dual task) in experiment 1 was significantly
greater than that in experiment 2 (0.180 vs. 0.126, U = 326, p = 0.047).
This could be because the elongated inter-trial interval in experiment
1 made the Single-task condition easier (Fig. 2). Indeed, Wilcoxon test
showed that the accuracy in the Single-Task condition was higher in
experiment 1 than in experiment 2 (U = 652.5, p = 0.016).

To investigate whether task-switching, in the absence of dual-task,
also impacted performance, we calculated the average difference in
accuracy between the Task-switch and Task-overlap conditions in ex-
periment 3. This difference was significantly different from 0 (0.074;
U = 44,p < 0.001), indicating that the dual-task had a unique im-
pact beyond task switching. However, the difference was significantly
smaller than the average difference in accuracy in experiment 1 and in
experiment 2 (U = 343;179, p = 0.047; p < .001). Because the dual-task
condition in experiment 1 and 2 were the same condition as the Task-
overlap condition in experiment 3, this effect can only be explained by
the fact that participants performed worse in the Task-switch condition
in experiment 3, compared to the single-task condition in experiment 1
and 2. This illustrates a cost to task-switching vs. single task. Through a
more direct comparison, we indeed found that participants performed
worse in the Task-Switch condition in experiment 3 compared to the
Single-Task conditions in experiment 1 and 2 (U = 870.5,752.5;p <
0.001, p = 0.002).

3.2. Learning phase

We next sought to more carefully characterize condition and experi-
ment effects using two-way ANOVA (see methods). Participants showed
clear evidence of learning the stimulus-response mappings across all
conditions. The probability of selecting the correct action increased
with the number of stimulus appearances (Fig. 2). Furthermore, learn-
ing was markedly weaker in the task-overlap condition than in the
single-task condition in experiments 1 (F(1,180) = 86.27,p < 0.001)
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Fig. 2. (A) Learning Curves: Participants learned stimulus-response associations over time, with significant effects of set size, experiment, and condition. Curves reflect the
proportion of correct responses as a function of the number of times that each stimulus was presented, plotted separately for each set size and condition. (B) Model validation:
the RLWM model captures well the overall proportion of correct choices across experiment, condition, and set size effects. Error bars reflect the standard error of the mean.

and 2 (F(1,180) = 34.80,p < 0.001) and the task-switch condition in
experiment 3 (F(1,192) = 9.655, p = 0.002) .

Regression analysis results confirmed that participants used both
working memory and reinforcement learning processes to solve the
task. Indeed, if working memory was recruited in this task, increas-
ing the set size should decrease performance because holding more
stimulus-response associations in mind across trials should make learn-
ing harder. We also analyzed the effect of cumulative reward for each
stimulus in the regression model, obtained by adding all the points
rewarded to each stimulus up to each trial. If reinforcement learning
is incrementally increasing the value of the correct action associated
with each stimulus, then performance should increase with the number
of previous trials in which a stimulus has been rewarded. Replicating
previous results (Collins et al., 2017a; Collins & Frank, 2012), we
observed both a significant negative effect of set size on performance

in experiment 1 (§ = —0.175, y2(5) = 25.433,p < 0.001), experiment
2 (f = —0.288, y%(5) = 63.784,p < 0.001), and experiment 3 (f =
-0.174, y>(5) = 33.075,p < 0.001), as well as a significant positive
effect of cumulative reward on performance also in experiment 1 (f =
0.874, ¥%(5) = 478.120,p < 0.001), experiment 2 (f = 0.836, y*(5) =
419.443,p < 0.001), and experiment 3 (f = 0.821, y2(5) = 568.759,p <
0.001), likely reflecting, respectively, the influences of working memory
load and trial-by-trial reinforcement learning in this task (Fig. 2).

The regression model also tested the effect of “delay” on perfor-
mance, captured by the number of trials passed since the last time
a particular stimulus was observed and correctly responded to. We
observed a significant negative effect of trial-based delay in exper-
iment 1 (B —0.363, ¥2(5) = 153.088,p < 0.001), experiment 2
(F = —0.399, y2(5) = 167.838,p < 0.001), and experiment 3 (f =
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mean in both plots.

—0.366, y2(5) = 161.038,p < 0.001), suggesting that short-term forget-
ting occurs during the task (a result which is also consistent with the
recruitment of working memory).

Finally, the regression results allowed us to consider dual task-
overlap effects (Fig. 2). Consistent with our predictions, we observed
a significant effect of condition in experiment 1 (f = —0.605, y%(5) =
313.310,p < 0.001), experiment 2 (f = —0.442, y(5) = 176.374,p <
0.001), and experiment 3 (§ = —0.188, ¥2(5) = 49.701, p < 0.001). Partic-
ipants performed worse on the learning task in the Task-Overlap condi-
tion versus the Single-Task and Task-Switch condition. This result sup-
ports our prediction that performing the secondary task while concur-
rently retrieving and/or integrating reward feedback of the stimulus—
response associations (Task-Overlap) had a stronger negative effect on
learning relative to a situation where the secondary task is performed

in between trials (Task-Switch) or relative to a situation where no
secondary task was performed. Thus, actively maintaining information
in WM affected instrumental learning performance.

3.3. Testing phase

The asymptotic rate of learning performance, as expected, positively
predicted the performance in the testing phase in experiment 1 (f =
0.755, y2(4) = 354.452,p < 0.001), experiment 2 (f = 0.781, y2(4) =
380.872,p < 0.001), and experiment 3 (f = 0.908, y2(4) = 528.983,p <
0.001). This result gives more assurance that participants perform better
on trials with stimuli that were well learned in the learning phase.

Next, we observed a significant positive effect of set size in exper-
iment 1 (# = 0.179, y?(4) = 18.605,p < 0.001), experiment 2 (f =
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0.192, y2(4) = 21.247,p < 0.001), and experiment 3 (§ = 0.161, y2(4) =
17.154,p < 0.001; Fig. 3). This finding replicates seemingly counter-
intuitive previous findings (Collins, 2018): That is, this result suggests
that when set size is low and working memory is contributing the
lion’s share to learning, long term retention of stimulus-action asso-
ciations is actually hindered; conversely, when the set size is higher
and reinforcement learning contributes more to learning, long-term
retention is improved (even after controlling for asymptotic perfor-
mance). Thus, the testing phase may act as a proxy for the strength of
stimulus-response associations learned via the reinforcement learning
system.

For the same reason, we might expect participants to potentially
perform better in the testing phase on stimuli from the Dual-Task
condition where working memory is directly taxed, assuming that the
two systems (WM and RL) are competing. Contrary to this expectation,
however, we found that participants performed worse in the testing
phase on trials with stimuli from the Task-Overlap condition in ex-
periment 1 (f = —0.304, 72(4) = 43.395,p < 0.001) and experiment 2
(f = —0.262, y2(4) = 35.184,p < 0.001). In experiment 3, participants
performed worse on trials with stimuli from the Task-Overlap condition
than the Task-Switch condition (8 = —0.142, y2(4) = 13.466, p < 0.001).
This suggests that the effects of the condition we saw in the learning
phase are not simply an effect on choices but actually on how well
participants learned (Fig. 3). Otherwise, we would not see a condition-
level effect on accuracy in the testing phase but only in the learning
phase. This result also implies that directly blocking working memory
seems to impair the performance of the reinforcement learning system
as well, leading to decreased accuracy of testing phase responses.

Finally, we investigated the difference between the accuracy in
the testing phase and the average accuracy of the last 3 trials of the
learning phase (Fig. 3). We ran a linear mixed-effect regression on the
difference in average accuracy with the following predictors: condition,
set size, and their interaction term. While we replicated the previous
finding (Collins, 2018) that the set size had a significant positive effect
in experiment 1 (f = 0.272, )(2(5) = 16.035,p < 0.001), experiment
2 (f = 0242, y%(5) = 14.285,p < 0.001), and experiment 3 (f =
0.249, ¥2(5) = 12.960,p < 0.001), we did not see a significant effect
of condition (¥2(5) < 1.874,p > 0.171). This suggests that while the
dual-task manipulation decreased participants’ learning of the reward
mapping, it did not affect the decay rate of the learning outcome.

3.4. Computational modeling results

To directly investigate the mechanisms leading to condition and
experiment effects, we next turned to RLWM modeling. We first looked
at the model parameters we computed as a result of model fitting (Fig.
4). In both experiment 1 and experiment 2, we observed a significant
difference between the Dual-Task and Single-Task conditions in the
reinforcement learning rate « (Exp 1 U = 71,p < 0.001; Exp 2 U =
71,p < 0.001), learning bias a= (Exp 1 U = 101,p = 0.003; Exp 2
U = 80,p < 0.001), forgetting y (Exp 1 U = 433,p < 0.001; Exp
2 U = 460,p < 0.001) and basis working memory weight p (Exp 1
U = 92,p = 0002; Exp 2 U = 47,p < 0.001). The fact that the
dual-task manipulation did not have a significant effect on the ¢ noise
parameter argues against the possibility that the effect of dual-tasking
simply increased the noise of value-based choice without substantively
impacting any executive function. Rather these results strongly suggest
that dual-task manipulations during instrumental learning effectively
interfere with both working memory itself, as suggested by decades of
dual-task work, but also a putatively lower-level reinforcement learning
system.

Interestingly, in Experiment 3, the only parameter value that signif-
icantly differed between the Task-Overlap and Task-Switch conditions
was the reinforcement learning rate « (U = 69,p < 0.001). This
result indicates that any dual task — whether it is one that is toggled
between trials of learning or one that requires simultaneous memory
maintenance during choice and updating — appears to hinder the rein-
forcement learning component of instrumental learning. On the other
hand, the timing at which the extra memory load is imposed during
dual-tasking appears to determine the severity of the dual-task effect on
the reinforcement learning system. If the extra memory load is imposed
during the value encoding stage of learning, as was the case in the Task-
Overlap condition and all dual-task conditions in Experiments 1 and 2,
we see a heightened hindrance of the reinforcement learning system.

4. Discussion

Many lines of evidence point to distinct processes contributing to
instrumental learning (Collins & Frank, 2012; Daw, Gershman, Sey-
mour, Dayan, & Dolan, 2011; Lee, Seo, & Jung, 2012). We have
recently suggested that two of the processes, working memory (WM)
and cortico-striatal reinforcement learning (RL), can be teased apart us-
ing specific task designs and computational modeling methods (Collins,
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2018; Collins & Frank, 2012). One of the large gaps in this framework
concerns the interaction of these two systems: whether one functionally
depends on another. Our work here provides evidence that the RL sys-
tem indeed depends on executive functions, because perturbing execu-
tive functions experimentally through the dual-task paradigm (Econo-
mides et al., 2015; Jiménez & Vazquez, 2005; Liefooghe, Barrouillet,
Vandierendonck, & Camos, 2008) led to worse learning outcomes in
the RL system, even after controlling for direct contributions of WM
to learning. We isolated the RL system using both an experimental
method, by introducing a test phase after the learning phase, as well as
through the “RLWM” model, which has shown to dissociate separate
contributions of WM and RL to instrumental learning (Collins, 2018).

The first main finding was that under the dual-task conditions,
participants performed significantly worse in the testing phase, where
performance depended more on information encoded in the RL system.
Through modeling, we also found a clear effect of dual-tasking on the
learning rate of the reinforcement learning system (Fig. 4). That a tax
on executive function would directly disrupt the primary parameter
of the (putatively implicit, “lower-level”) RL system is novel in our
view, and may point to a deeper connection between executive function
and RL than normally assumed (Rmus et al., 2021). We note that an
alternative prediction could have been that the dual-task would disrupt
the choice process itself, as opposed to learning-related processes. If
that were the case, we would expect the noise (¢) parameter to be
higher under dual-tasking, which we did not observe (Fig. 4). This
further supports our interpretation that the dual-task interfered with
learning computations, rather than choice per se.

Zooming out, we can interpret this result as an indication that
working memory does not merely function as a separate storage system
that works in parallel with the reinforcement learning system. If that
were the case, we would expect taxing the executive function through
dual-tasking to only disrupt the WM module while leaving the RL
module unaffected. The fact that we found broader effects of the dual-
task adds further support to the idea that there is a close dependency
between WM and RL, as suggested in a recent similar study (Collins
& Frank, 2018). We note that the dual-task paradigm does not allow
us to directly speak to which specific component of executive function
was responsible for the impairment of the RL system. We have a few
speculations about why such an impairment occurs. One hypothesis
would be that greater noise in prefrontal representations, as expected
from the addition of load, affects basic RL computations, for instance by
disrupting “eligibility traces” that could be used to glue together states,
actions, and rewards (Curtis & Lee, 2010) on short timescales. An-
other hypothesis is that some kind of explicit, internal verbal rehearsal
process is being used by subjects in our task (Gershman, Markman,
& Otto, 2014), and that this process is disrupted or even blocked by
the dual-task used in Experiments 1 and 2. Future work could use less
verbalizable symbols in the dual-task to help tease out a role for verbal
rehearsal here (Yoo et al., 2023).

Our results also speak to some of the basic interpretations behind
dual-tasking — dual-task manipulations are often thought to be useful
tools for singularly taxing executive functions like attention and work-
ing memory, while sparing other (often sub-cortically linked) more
implicit processes (Cohen, Ivry, & Keele, 1990; Otto, Taylor, & Mark-
man, 2011; Vallesi, Arbula, & Bernardis, 2014; Zeithamova & Maddox,
2006). While this general framework is useful and well-replicated,
our results here complicate these assumptions somewhat, at least in
the domain of instrumental learning. By showing that dual-tasking
significantly disrupted a putatively non-cognitive RL system, we chal-
lenge the idea that dual-tasks leave implicit learning untouched (Rmus
et al., 2021). Our findings may also have useful implications in more
applied domains. For example in education, our findings suggest that
factors that disturb executive functions (such as multi-tasking) may also
impair more implicit learning mechanisms, like RL. In computational
psychiatry, our findings highlight the difficulty of mapping mental
disorders to specific sub-components of learning due to their mutual
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dependency. Overall, our findings point to a more general principle
— seemingly distinct learning systems may often be at least somewhat
intertwined, suggesting a more interactive approach to understanding
learning (Collins & Frank, 2018; Fischer, Drosopoulos, Tsen, & Born,
2006; McDougle, Ivry, & Taylor, 2016).
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