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INTRODUCTION

The Society for the Neural Control of Movement arrived for
the first time in Asia for their 29th annual meeting in Toyama,
Japan (from April 22-29th, 2019). The meeting attracted over
325 attendees with a broad range of expertise and interests.
Two focused premeetings on the neurophysiology of eye and
hand motor control took place in Kyoto and Tokyo, Japan,
respectively. These small-format meetings fostered interac-
tions and in-depth discussions. In addition, a satellite meeting
focused on “predictive coding and active inference to know
and explore the world” took place before the annual meeting.
The main meeting’s topics ranged from neurophysiology (sin-
gle and multiunit neural recordings, calcium imaging, fMRI) to
computation (deep learning, computational modeling of neural
circuits and behavior, and muscle modeling) and behavioral
implications for movement control and learning. Altogether,
the presented work covered a broad range of motor research
across different model systems—from primate physiology,
human psychophysics, and mouse motor skills to theoretical
models of fruit fly biomechanics.

As has been done in previous years (Gallego et al. 2017a;
Mazurek et al. 2018), here we present a brief summary of the
highlights of the meeting. We categorized these highlights into
four main themes: /) circuits of sensory and motor control, 2)
computational tools and models for motor neuroscience, 3) the
relationship between muscle properties and motor control, and
4) naturalistic and complex behavioral tasks.

CIRCUITS OF SENSORY AND MOTOR CONTROL

Marking the 50th anniversary of Dr. David Marr’s seminal
paper on the cerebellum (Marr 1969), the 29th Neural Control
of Movement meeting naturally lent itself to a discussion of the
legacy of the Marr-Albus-Ito theory (Albus 1971; Ito 2006).
This discussion was especially poignant given that the society
meeting was the first in Japan, the late Dr. Ito’s home country.
Dr. Mackenzie Mathis started off the panel on the legacy of the
Marr-Albus-Ito theory by highlighting the role of behavior in
studying the cerebellum. It is well known that patients with
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cerebellar degeneration have deficits adapting to force fields
(Smith and Shadmehr 2005) and other visuomotor perturba-
tions (Martin et al. 1996; Tseng et al. 2007). Mathis, using a
novel force field adaptation paradigm in mice (Mathis et al.
2017), demonstrated that when she chemogenetically inacti-
vated cerebellar Purkinje cells, the mice were not able to
reliably adapt to the imposed force field. However, these mice
also exhibited problems in control, i.e., they moved in an ataxic
fashion (Mathis 2017). In contrast, when the somatosensory
cortex was inactivated optogenetically, mice were similarly not
able to adapt to the force field yet did not display any clear
control problems (Mathis et al. 2017). This dissociation sug-
gests a critical role for cortical motor areas in updating senso-
rimotor internal models. Dr. David Ostry presented an intrigu-
ing set of data from humans that was consistent with the
aforementioned work on the somatosensory cortex in mice;
Ostry showed that continuous theta-burst transcranial magnetic
stimulation delivered to somatosensory cortex—but not motor
cortex—appeared to impair the consolidation of motor mem-
ories over a 24-h period.

Dr. Megan Carey, using chemogenetics in mice, showed that
the cerebellum is required for split-belt adaptation (Darmohray
et al. 2019). This result is consistent with work on humans
(Morton and Bastian 2006). Interestingly, and in contrast to the
force field adaptation experiments involving reaching (Mathis
et al. 2017), lesion experiments suggested that the cerebral
cortex is not required for split-belt adaptation (Darmohray et
al. 2019). Moreover, specific subcomponents of a single adap-
tation task (i.e., the spatial and temporal aspects of gait adap-
tation in split-belt tasks) appear to rely on dissociable neural
circuits (Darmohray et al. 2019). Taken together, these recent
studies in mice and humans highlight the complex nature of
motor adaptation, and suggest that the different adaptation
tasks (e.g., force field adaptation versus split-belt treadmill
adaptation) may recruit distinct neural circuits.

According to the Marr-Albus-Ito theory, Purkinje cell com-
plex spikes, which are driven by the climbing fibers of the
inferior olivary nucleus, constitute the teaching signal for
cerebellar learning. Dr. Kazuo Kitamura described how Pur-
kinje neurons within aldolase C compartments, a marker for
the longitudinal stripes within the cerebellum (Brochu et al.
1990), have highly synchronous complex spike activity both
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during spontaneous and (sensory) evoked behavior (Tsutsumi
et al. 2015). Subsequently, he presented recordings of complex
spike activity during an auditory discrimination and a forelimb
lever-press task that also revealed high levels of synchrony. Dr.
Mark Wagner also presented a poster with similar conclusions
in a different reaching task in mice. In a distinct tracking task
in primates, Dr. Martha Streng also showed that complex spike
firing in the primate cerebellum appears to convey predomi-
nantly predictive information about the behavior for online
control (e.g., upcoming position errors and kinematics) (Streng
et al. 2017b). A cerebellar Purkinje cell also receives input
from parallel fibers that modulate a high-frequency simple
spike activity. Streng also highlighted the importance of the
interactions between simple and complex spikes for motor
control (Streng et al. 2017a).

Dr. Terence Sanger offered a bird’s-eye view on the broader
status of the Marr-Albus theory (Albus 1971; Marr 1969). This
revolutionary theory on cerebellar learning has, for the most
part, stood the test of time. However, as Sanger noted, it has
required key modifications and still faces many unanswered
questions—for instance, Sanger emphasized the crucial insight
from Ito that the cerebellum can only be understood in the
context of other brain areas via cerebrocerebellar communica-
tion loops (Ito 2006). Excitingly, modern imaging techniques
now allow researchers to address questions about cerebrocer-
ebellar coordination by simultaneously recording large popu-
lations of neurons across multiple regions of the brain and the
nervous system. For example, Dr. Mark Wagner and col-
leagues performed chronic imaging in both the cerebral cortex
and the cerebellum during a learning task. They revealed that
initially dissimilar activity patterns of cells in layer 5 of the
cortex and cells in the granular layer of the cerebellum con-
verged onto low-dimensional, task-relevant representations as
learning progressed (Wagner et al. 2019). Imaging also dem-
onstrated that important behavioral variables, like reward ex-
pectations, are encoded in granular cells of the cerebellum
(Wagner et al. 2017). Several presenters acknowledged the
importance of studying cerebellar function in a variety of tasks
(Darmohray et al. 2019; King et al. 2019; Wagner et al. 2017),
and in conjunction with cerebral cortical activity (Wagner et al.
2019). Moving forward, both of these approaches will be
critical for elucidating the functional heterogeneity of the
cerebellar cortex in task domains beyond motor learning and
control (Diedrichsen et al. 2019).

In an engaging and inspiring distinguished career award talk,
Dr. John Kalaska presented a historical perspective of research
investigating the role of cortex in voluntary movements. He
revisited influential studies from 1960 to 1980, referring to this
period as the “Golden Era.” Furthermore, he highlighted that in
that period researchers /) were restricted to neural recordings
generally using single microelectrodes, 2) focused on reducing
the degrees of freedom to single joint movements (flexion and
extension), and 3) interpreted results in a transcortical servo-
control loop model (Evarts 1968; Fetz and Cheney 1980;
Thach 1978). These years were influential because studies
seemed to provide the first supportive evidence for what might
be encoded at the level of single neurons in the motor cortex,
which included movement dynamics, muscle patterns, and
kinematics (Georgopoulos et al. 1982; Kalaska and Crammond
1992; Sergio et al. 2005). Different areas like dorsolateral
premotor cortex (PMd) and parietal Brodmann area 5 (AS)
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were later also analyzed in this way (Crammond and Kalaska
1989; Hamel-Paquet et al. 2006; Scott and Kalaska 1997; Scott
et al. 1997).

Finally, Kalaska summarized how advances in research on
cortical coding for movement has evolved, emphasizing 7)
simultaneous multiunit neural recordings with dimensional
reduction techniques (Churchland et al. 2012; Gallego et al.
2017b, 2018; Wagner et al. 2019), 2) expanding research to
complex scenarios related to higher order planning, action
selection and decision making (Cisek and Kalaska 2005;
Kalaska and Crammond 1995; Wang et al. 2019), and 3)
optimal-feedback and dynamical network models (Lillicrap
and Scott 2013; Omrani et al. 2016; Pruszynski et al. 2011).
Kalaska also emphasized that current dynamical systems views
of the motor system should try to incorporate our rich knowl-
edge of how neurons also appear to encode specific kinematic
and dynamic variables.

The population-level dynamical systems analyses revealed
that reaching movements are accompanied by rotational dy-
namics within primary motor cortex (M1) (Churchland et al.
2012). Dr. Sliman Bensmaia presented a poster to study the
extent to which such dynamics are also present during grasping
movements but failed to find strong signatures of rotational
dynamics. This suggests that low-dimensional rotational dy-
namics might not be a universal task-invariant signature of M1
activity (Goodman et al. 2019). Dr. Brian Dekleva presented an
analysis of neural population dynamics in tasks involving
grasping and contrasted the relation between dynamics during
reaching while grasping (transport of objects), which appeared
to change depending on the task demands/constraints.

Flowing with the dynamical systems paradigm, Andrew
Zimnik approached the question of whether and how motor
cortical neurons generate movement sequences, training pri-
mates to generate a sequence of two reaching movements while
recording from multiple neurons in the motor cortex. His data
suggested that in M1 each movement is prepared and executed
sequentially; preparation for the next movement began during
the execution of the previous movement. Dr. Mark Churchland
showed new results contrasting the neural population dynamics
known from primary motor cortex (Churchland et al. 2012)
with the neural dynamics in the supplementary motor area
(SMA) in an hand-cycling task. He presented a distinct popu-
lation geometry in SMA with low trajectory divergence and
suggested that this result hints at the class of computations the
SMA performs, such as guiding of future action (Russo et al.
2019). Finally, as mentioned in Dr. Kalaska’s talk, beyond
leveraging multiunit neuronal recordings while focusing on a
variety of complexity related to motor control (planning, action
selection, decision making), there is a need to develop com-
putational models to make sense of these large scale neural/
behavioral data.

COMPUTATIONAL TOOLS AND MODELS FOR MOTOR
NEUROSCIENCE

One panel focused on novel methods based on Deep Learn-
ing. Deep Learning has made tremendous strides in recent
years and has impacted many fields, from controlling robots, to
optimizing computer vision tasks and improving generative
modeling (Insafutdinov et al. 2017; Kingma and Welling 2014;
Krizhevsky et al. 2012; Lillicrap et al. 2015). In the first talk of
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this panel, Dr. Alexander Mathis highlighted how algorithms
based on deep convolutional neural networks (Cao et al. 2017,
Insafutdinov et al. 2017; Krizhevsky et al. 2012) can be
harnessed for markerless pose estimation in the laboratory. He
showed data from various behaviors and species, including:
mice engaged in an odor-guided navigation task, reaching in
mice, and estimating the pose of egg-laying fruit flies (Mathis
et al. 2018) and also highlighted how these methods can be
extended outside the laboratory, for instance, to track hunting
cheetahs in 3D based on multiple cameras (Nath et al. 2019).
He outlined how pose data can be utilized to compactly
describe behavior, or to study biomechanics (e.g., of cheetah
tails). DeepLabCut is already widely used and showed up in
several talks and presentations throughout the meeting, e.g., by
Drs. Kathleen Cullen and Alexander Gail (Berger and Gail
2018). In the second talk of this panel, Dr. Nidhi Seethapathi
presented a study for using markerless pose estimation tech-
nology to study movement disorders in infants: They collected
hundreds of videos from YouTube and had them hand-anno-
tated on Mechanical Turk, a crowdsourcing platform (https://
www.mturk.com). These training data were then used to fine-
tune OpenPose (Cao et al. 2017) to extract the posture of
infants from videos (Chambers et al. 2019). In summary, deep
convolutional neural networks can efficiently extract behavior
from video data across animal species (Mathis et al. 2018; Nath
et al. 2019), as well as humans, with novel applications from
sports science (Kaplan et al. 2019) to rehabilitation (Cronin et
al. 2019).

Beyond processing videos, deep learning has also tremen-
dously advanced the analysis of other forms of data. Determin-
ing the underlying structure for complex data sets, like the
spiking patterns of neurons, is in general computationally
intractable. Kingma and Welling (2014) developed efficient
approximations that make it possible to learn tractable gener-
ative models of high-dimensional neural data. A recently
published method, LFADS (latent factor analysis via dynami-
cal systems) leverages these advances for learning models of
spiking data (Pandarinath et al. 2018). LFADS attempts to
reproduce spikes from populations of neurons using a genera-
tive model comprising recurrent neural networks. Remarkably,
the learned low-dimensional dynamics of the recurrent network
often describe behavioral or internal states (that are not used
during training) extremely well (Pandarinath et al. 2018). Dr.
Pandarinath also emphasized how LFADS can be used for
systems that are not governed by autonomous dynamics, but
driven by external variables, such as when modeling sensory
areas. Fundamentally, LFADS’s cost function is highly non-
convex, and the fitting process is therefore nonunique and
highly dependent on hyperparameters. Dr. Pandarinath de-
scribed efforts to train these networks in the cloud while
“evolving” the hyperparameters to address this issue. These
techniques will greatly contribute to the robustness of LFADS
in the future. In the final talk of the session, Dr. Laura Driscoll
focused on studying Deep Networks as “model organisms” for
understanding the brain. Feedforward, convolutional networks
have become popular tools for understanding the ventral visual
pathway (Yamins and DiCarlo 2016). Here, Driscoll focused
on a recurrent neural network that was trained to solve multiple
cognitive tasks, which have been studied in monkeys (Yang et
al. 2019). Her analysis techniques could help elucidate under-
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lying mechanisms of how the networks, and by extension,
brains solve complex cognitive tasks.

In several talks throughout the conference, researchers ad-
dressed key theoretical questions in human motor learning and
control. For example, a popular model are inverse and forward
models for motor control (Wolpert and Kawato 1998), with the
former helping to specify the motor commands needed to
achieve a desired sensory outcome and the latter helping to
predict the sensory consequences of an elicited motor com-
mand. Conventional theories of sensorimotor adaptation claim
that adaptation relies on the updating of a forward model. Dr.
Alkis Hadjiosif presented a provocative set of experiments
suggesting that, contrary to the prevailing view, sensorimotor
adaptation appears to reflect updating of an inverse model
rather than a forward model. In standard human visuomotor
rotation experiments, where both forward and inverse models
predict similar adaptive behaviors, dissociating the two is
difficult. Hadjiosif dissociated them by having subjects per-
form reaches under a “mirror reversal” condition. Hadjiosif
argued that a forward model should be able to easily adapt to
mirror reversals, as the sensory errors themselves reflect the
model’s output directly, and the controller can be adapted to
reduce those errors. However, an inverse model must make
assumptions about the motor-to-sensory-outcome relationship,
e.g., that leftward adaptation should counteract a rightward
sensory error. Such an assumption will fail for mirror reversals,
causing a counterproductive inflation in visual error. Indeed,
subjects’ errors increased, with movements drifting away from
targets along the mirror axis, supporting the predictions of
inverse model-driven adaptation.

Another idea that comes from these models is that feedback
responses to mechanical perturbations also rely on an internal
model of arm dynamics (Kurtzer et al. 2008). Rodrigo Maeda
presented a set of experiments showing that when human
participants are trained for extended periods to generate elbow
movements with shoulder fixation (altered arm dynamics), they
learn to slowly reduce shoulder muscle activity. It is efficient to
reduce shoulder muscle activity in this context because fixing
the shoulder joint eliminates the effect of the interaction
torques that arise at the shoulder joint with forearm rotation
(Maeda et al. 2017) and removes the need to activate the
shoulder muscles. This feedforward learning was found to
transfer to feedback responses to mechanical perturbations that
were never directly trained during the shoulder fixation, sug-
gesting that feedforward and feedback control share an internal
model of the arm’s dynamics (Maeda et al. 2018).

Dr. Tomohiko Takei investigated the nature of these feed-
back responses in an optimal feedback control model and
found that disruption of control policy variables impaired
accuracy and response speed, while impairing state estimation
affected only accuracy. He then used cooling techniques to
deactivate various brain regions (Meyer-Lohmann et al. 1975)
during experiments in which monkeys received mechanical
perturbations applied to their upper limb. He found that when
PMd was cooled, accuracy and response speed were both
impaired, but when A5 was cooled, impairments were ob-
served only for accuracy. He concluded that PMd and A5 offer
distinct contributions to these feedback pathways, supporting
control policy and state estimation, respectively. In addition,
perturbing the forward model resulted in oscillatory move-
ment, which is consistent with cooling the dentate nucleus
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(Meyer-Lohmann et al. 1975). This work also nicely tied in
with the careful perturbation and modeling analysis of motor
adaptation in mice during reaching (Mathis et al. 2017) and
locomotion (Darmohray et al. 2019) that we discussed under
CIRCUITS OF SENSORY AND MOTOR CONTROL above.

THE RELATIONSHIP BETWEEN MUSCLE PROPERTIES AND
MOTOR CONTROL

The last panel session of the conference focused on the
muscular basis of motor control. Drs. Madhusudhan Venkade-
san, Neville Hogan, Kiisa Nishikawa, and Lena Ting empha-
sized that the complex material properties of muscles are
crucial features of motor control. While the speakers used
diverse methodologies and model systems to investigate the
relationship between muscles and behavior, all emphasized the
need to more thoroughly understand the relationship between
the material properties of muscles and behavior, as well as the
need to incorporate nonlinear properties of muscles into muscle
models.

Classical views of motor control suggest that neural com-
mands from the brain specify task-level kinematic or dynamic
parameters (e.g., end point velocity or joint torques, respec-
tively). The speakers presented an approach to motor control
where the material properties of the muscle, along with the
muscle’s recent history of movement and activation, are sig-
nificant factors. One essential property is muscle stiffness, or
the extent the muscle will lengthen in response to altered
tension during muscle activation (Herbert 1988). Dr. Hogan
explained that muscle stiffness, which increases with force,
helps to keep the skeleton from collapsing. The increase in
stiffness due to muscle activation must be faster than the
destabilizing stiffness of the skeletal geometry to counteract
the instability in the musculoskeletal system. Additionally, the
coactivation of an antagonist muscle is used to modulate joint
stiffness, ultimately helping to further stabilize joint posture
(Hogan and Sternad 2013). Dr. Venkadesan provided a related
viewpoint on the importance of muscle stiffness in relation to
stability. He argued that muscles transition between fluid and
solid states depending on the dynamics of movement. For
example, when a finger joint buckles under pressure, the
muscle transitions from a solidlike to a more fluid state as
stiffness rapidly decreases.

Efforts to understand how muscle properties contribute to
motor control are often limited by the complexity and realism
of the computational models used to investigate force genera-
tion. Since the late 1950s, researchers have primarily used
variants of the sliding filament/cross-bridge theory to model
muscle contraction. Although models based on this theory
successfully represent the force output from concentric and
isometric contractions, such models do not include important
properties that reflect an actively stretched muscle (Herzog et
al. 2015). More specifically, these models cannot explain
biomechanical nonlinearities such as the nonlinear increase in
muscle force when motor neuron action potentials arrive in
rapid succession (Srivastava et al. 2017) or after the stretching
of a muscle (Sober et al. 2018). It is necessary to create models
that accurately reflect muscle properties to fully understand
biomechanics. Drs. Nishikawa and Ting discussed new ad-
vances in the sliding filament model that explain specific
nonlinear properties in muscles.
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Research in Dr. Nishikawa’s laboratory has led her group to
explore how titin, a muscle protein that connects the end of the
thick filaments (myosin) to the Z-disk, might help to explain
the nonlinear force output of muscles. Based on their experi-
mental results, they hypothesize that the influx of calcium in
response to muscle activation leads to the N2A region of titin
binding to actin, causing titin to stiffen. Once titin is attached
to actin, the cross bridges between actin and myosin act as
rotors and wind titin around the thin filaments. This winding
action stores energy in the PEVK region of titin, a repeated
sequence containing a high quantity of proline amino acids.
The two-step winding filament model has successfully sim-
ulated nonlinear force enhancement in response to stretch-
ing and nonlinear force depression in response to shortening
(Nishikawa et al. 2012).

Dr. Ting presented human and animal experiments investi-
gating the role of short-range stiffness in response to postural
perturbations (De Groote et al. 2017) and how muscle spindles
encode short-range stiffness in the muscle (Blum et al. 2017,
2019). Short-range stiffness of muscle, which is movement
history dependent, causes muscle force to increase quickly and
transiently in response to stretch. The increase of force induced
by short-range stiffness can be measured by taking the first
time derivative of the force, known informally as “yank.” Data
from single muscle fibers demonstrated that yank increases
proportionally with the level of muscle activation and may
explain forces in the silent period (the background activity)
during balance perturbation. To accurately reflect joint kine-
matics and stability following perturbation, Dr. De Groote and
colleagues created a model of short-range stiffness that can be
used in conjunction with phenomenological muscle models
used in musculoskeletal simulations (De Groote et al. 2017,
2018).

The data presented in this panel convincingly showed that
intrinsic and biomechanical properties of muscles influence the
effects of neural activity on behavior. Instead of assuming a
simple role of a muscle as a linear force generator, the complex
mechanical and material properties of a muscle impact the
relationships between external forces, neural activity, and be-
havior. Because these muscle features contribute to the motor
output, it is likely these features shape patterns of neural
activity in the motor system by constraining the neural strate-
gies the brain uses to learn and perform motor tasks.

NATURALISTIC AND COMPLEX BEHAVIORAL TASKS

Several exciting talks about human motor learning and
control addressed fundamental conceptual issues and outlined
new challenges. For instance, while most motor learning tasks
are conducted with sitting subjects, in the real world we are
often moving, whether by foot, bicycle, or car. How does body
acceleration affect action selection and execution? Or, in the
realm of sensorimotor adaptation, much work has pointed
toward the adaptation of a forward model as the fundamental
underlying mechanism—are there problems with these views?
Many talks and posters raised similar important, challenging
questions.

In the spirit of last year’s emphasis to broaden our human
motor learning techniques to incorporate more naturalistic
tasks (Mazurek et al. 2018), several researchers discussed the
important issue of the interaction between naturalistic whole-
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body movements (real or simulated) on action selection, exe-
cution, and motor corrections. Dr. Shlomi Haar presented a
novel effort to design and study real-world motor learning
using the game of pool table billiards and showed a large scale
data analysis to compare individual performance, rates of
learning, and movement variability in this scenario (Haar et al.
2019). Dr. Carlos Hernandez-Castillo developed a handheld
device that could simulate slip in any of the five fingers and
used it to investigate the influence of somatosensory informa-
tion on whole arm corrective responses. He found fast feed-
back responses in shoulder muscles that varied with slipping
direction and magnitude and that were potentiated when com-
bined with joint perturbations (Hernandez-Castillo et al. 2019).
Dr. Sasha Reschechtko presented an experimental approach to
study the integration of tactile information during reaching in
an unconstrained reach/antireach task in three dimensions to-
ward a physical target. By using wireless EMG electrodes and
a very small magnetic tracking probe, he captured relevant
muscle activations and kinematics without interfering with the
free-reaching task. His results showed that corrections during
reaches, guided by tactile feedback, had latencies similar to
those guided by visual feedback (Pruszynski et al. 2016), while
touch-guided corrections under an antireach instruction had
less direction specificity and occurred at a similar latency.

Dr. Pieter Medendorp also addressed the topic of naturalistic
movements by measuring how body acceleration signals affect
action selection, specifically showing that saccadic decisions
(where to look) are biased toward the direction of body
acceleration and may be driven by cortical modulation driven
by those acceleration signals. Dr. Andrea Green discussed how
bipolar galvanic vestibular stimulation, which simulates head
rotation, modulates reaching movement in a manner consistent
with a transformation from a head-centered to a body-centered
reference frame (Moreau-Debord et al. 2014). These results
suggest that vestibular signals are directly incorporated in
voluntary reach control computations.

A challenge for studying complex behavior is to develop
ways to measure the associated neural correlates. Using an
fMRI-compatible device, Dr. Atsushi Yokoi presented a novel
behavioral paradigm in which participants were trained to
produce distinct sequences of finger key presses while in the
scanner. He found that motor cortex specifically represented
individual finger movements, while premotor and parietal
cortices showed a mixture of chunk, sequence, and finger
transition representations (Yokoi and Diedrichsen 2019).
Dr. Alexander Gail presented a wireless, multiarea, single
unit-neural recording system that could be employed in non-
human primates while they make simultaneous walking-and-
reaching movements, opening new avenues for investigations
of more naturalistic behaviors (Berger and Gail 2018).

Dr. Gelsy Torres-Oviedo was awarded with the early career
award and presented her comprehensive body of work charac-
terizing muscle activity pattern when human participants
walked on a split-belt treadmill. She showed that muscle activity
changes during split-belt walking reflect adapted sensorimotor
internal models for gait control (Iturralde and Torres-Oviedo
2019). Moreover, adaptation of these new gait patterns be-
comes less flexible with age. Studying more naturalistic sce-
narios, such as walking, has an added value for understanding
and developing rehabilitation approaches for a variety of pa-
tients with neurological injury. Torres-Oviedo also presented
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data from stroke patients, in which cerebral lesions interfered
with the execution, but not the recalibration of motor com-
mands (de Kam et al. 2019).

Altogether, these presentations highlighted several advances
in the field toward understanding naturalistic behavior. Key
challenges discussed in the meeting can be summarized as /)
bringing more naturalistic behavioral scenarios to the labora-
tory settings requires developing ways to record and analyze
large data sets, from motion tracking of the eyes to multiple
body segments; 2) developing such complex tasks for neuro-
physiology recordings across model systems is still a chal-
lenge, but recent research has pushed the boundaries of tasks
that can be used for these investigations; and 3) a key challenge
to overcome is still generalization of findings across platforms.
However, modern tools like LFADS (Pandarinath et al. 2018)
and DeepLabCut (Mathis et al. 2018; Nath et al. 2019) can aid
in the analysis of behavior and brain activity in complex
naturalistic settings.

CONCLUSION

Taken together, advances highlighted in this 29th meeting of
the Society for the Neural Control of Movement in Toyama,
Japan approached movement control and learning from excit-
ing perspectives. Studies that focused on recording at the
cellular level showcased new analysis techniques and cutting-
edge recording and imaging technologies to simultaneously
record from hundreds of neurons during behavioral tasks.
Several studies also leveraged genetic/viral toolboxes for the
selective study of specific neuronal types and regions. Studies
involving unique computational tools and new models for
motor neuroscience attempted to explain and track key features
of motor behavior in animal species and human subjects, as
well as attempted to bring new insights into computational
mechanisms of the circuitry underlying motor behavior and
learning. A new understanding of muscle properties and their
relation to behavior was another focus of the conference.
Lastly, for several years now, researchers have been pushing to
study more ecologically realistic motor behaviors. As our
understanding of the neural control of movement progresses,
integration across all of these approaches is critical. Moreover,
as emphasized by Dr. John Kalaska in his keynote address, new
advances are key to pushing motor neuroscience forward and
should also be in dialogue with, and attempt to explain or
reinterpret, the rich trove of previous findings and challenge
established theories.
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