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SUMMARY

Decisions must be implemented through actions,
and actions are prone to error. As such, when an ex-
pected outcome is not obtained, an individual should
be sensitive to not only whether the choice itself was
suboptimal but also whether the action required to
indicate that choice was executed successfully.
The intelligent assignment of credit to action execu-
tion versus action selection has clear ecological util-
ity for the learner. To explore this, we used amodified
version of a classic reinforcement learning task in
which feedback indicated whether negative predic-
tion errors were, or were not, associated with execu-
tion errors. Using fMRI, we asked if prediction error
computations in the human striatum, a key substrate
in reinforcement learning and decision making, are
modulated when a failure in action execution results
in the negative outcome. Participants were more
tolerant of non-rewarded outcomes when these re-
sulted from execution errors versus when execution
was successful, but rewardwaswithheld. Consistent
with this behavior, a model-driven analysis of neural
activity revealed an attenuation of the signal associ-
ated with negative reward prediction errors in the
striatum following execution failures. These results
converge with other lines of evidence suggesting
that prediction errors in the mesostriatal dopamine
system integrate high-level information during the
evaluation of instantaneous reward outcomes.

INTRODUCTION

When a desired outcome is not obtained during instrumental

learning, the agent should be compelled to learn why. For

instance, if an opposing player hits a home run, a baseball

pitcher needs to properly assign credit for the negative outcome:
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the error could have been in the decision about the chosen ac-

tion (e.g., throwing a curveball rather than a fastball) or the

execution of that decision (e.g., letting the curveball break over

the plate rather than away from the hitter, as planned). Here,

we ask if teaching signals in the striatum, a crucial region for rein-

forcement learning, are sensitive to this dissociation.

The striatum is hypothesized to receive reward prediction error

(RPE) signals—the difference between received and expected

rewards—from midbrain dopamine neurons [1–3]. The most

common description of an RPE is as a model-free error,

computed relative to the scalar value of a particular action, which

itself reflects a common currency based on a running average of

previous rewards contingent on that action [4]. However, recent

work suggests that RPE signals in the striatum can also reflect

model-based information [5], in which the prediction error is

based on an internal simulation of future states. Moreover, hu-

man striatal RPEs have been shown to be affected by a slew

of cognitive factors, including attention [6], episodic memory

[7, 8], working memory [9], and hierarchical task structure [10].

These results indicate that the information carried in striatal

RPEs may be more complex than a straightforward model-free

computation and can be influenced by various top-down pro-

cesses. The influence of these additional top-down processes

may serve the striatal-based learning system by identifying vari-

ables or features relevant to the task.

To date, studies examining the neural correlates of decision

making have used tasks in which participants indicate their

choices with button presses or lever movements, conditions

that generally exclude execution errors. As such, the outcome

can be assigned to the decision itself (e.g., choosing stimulus

A over stimulus B) rather than its implementation (e.g., failing

to properly acquire stimulus A). To introduce this latter negative

outcome, we have recently conducted behavioral studies in

which we modified a classic 2-arm bandit task, requiring partic-

ipants to indicate their choices by physically reaching to the cho-

sen stimulus under conditions in which the arm movement was

obscured from direct vision [11, 12]. By manipulating the visual

feedback available to the participant, we created a series of

reward outcomes that matched those provided in a standard

button-pressing control condition but with two types of failed
td.
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Figure 1. Task Design

Participants selected one of three choice stimuli

(slot machines) on each trial by reaching to one of

them using a digital tablet in the fMRI scanner. Three

trial outcomes were possible: on Rew+ trials (bot-

tom left, green), the cursor hit the selected stimulus,

and a monetary reward was received; on Rew�
trials (bottom middle, orange), the cursor hit the

stimulus, but no reward was received; on Miss trials

(bottom right, purple), the cursor was shown landing

outside the selected stimulus, and no reward was

received.
outcomes: ‘‘execution failures’’ in the reaching task and ‘‘selec-

tion errors’’ in the button-press task. The results revealed a

strong difference in behavior between the two conditions, man-

ifested as a willingness to choose a stimulus that had a high

reward payoff but low execution success (i.e., participants

were tolerant of unrewarded ‘‘execution error’’ trials). By using

reinforcement-learning models, we could account for this result

as an attenuation in value updating following execution errors

relative to selection errors. That is, when reward was withheld

due to a salient execution error, participants were unlikely to

decrease the value of the stimulus that they had chosen.

This behavioral result is intuitive, but the underlying neural pro-

cesses are not as clear. One hypothesis is that striatal prediction

errors are primarily linked to the economic outcome of actions

and will thus be insensitive to whether a stimulus was properly

queried or not. That is, the striatum will respond similarly if the

absence of reward is the result of an execution or selection fail-

ure. On the other hand, prediction errors in the striatum may be

sensitive to the source of the error. Given the results of our

behavioral studies, we would expect the response following

execution errors to be attenuated relative to selection errors.

To test these hypotheses, we used fMRI to measure reward pre-

diction errors in the striatum after both selection and execution

errors.

RESULTS

We developed a simple 3-arm bandit task in which, during fMRI

scanning, the participant had to make a short reaching move-

ment on a digital tablet to indicate their choice on each trial

and to attempt to maximize monetary earnings (Figure 1). At

the end of the movement, feedback was provided to indicate

one of three outcomes, as follows: on Rew+ trials, the visual

cursor landed in the selected stimulus (i.e., slot machine), and

amoney bag indicated that $0.10 had been earned. OnRew� tri-

als, the visual cursor landed in the selected stimulus, but an X

was superimposed over the money bag, indicating that no
Current
reward was earned. On Miss trials, the vi-

sual cursor was displayed outside the cho-

sen stimulus, and no money was earned.

We used a stationary bandit task in which

the outcome probabilities associated with

each stimulus were fixed for the duration

of the experiment. The reward probability

for each stimulus (bandit) was fixed at
0.4, but the probabilities of Rew� andMiss outcomes varied be-

tween the three stimuli (0.5/0.1, 0.3/0.3, and 0.1/0.5 respectively;

see STAR Methods). To maintain the fixed probabilities for each

stimulus, we varied whether the cursor feedback was veridical

on a trial-by-trial basis. If the true movement outcome matched

the probabilistically determined outcome—either because the

participant accurately reached to the stimulus on a Rew+ or

Rew� trial or missed the stimulus on a Miss trial—the cursor po-

sition was veridical. However, if the true movement outcome did

not match the probabilistically determined outcome, the cursor

feedback was perturbed (see STAR Methods). Deterministically

controlling the outcomes of the trials was necessary to enforce

the fixed outcome probabilities, consistent with prior studies

[11, 12].

Behavior
In previous studies using a similar task, participants showed a

bias for stimuli in which unrewarded outcomes were associated

with misses (execution errors) rather than expected payoffs (se-

lection errors), even when the expected value for the choices

was held equal [11, 12]. We hypothesized that this bias reflected

a process whereby execution failures lead to attenuated nega-

tive prediction errors, with the assumption that credit for the

negative outcome under such situations was attributed to fac-

tors unrelated to the intrinsic value of the chosen action. This

behavior was formalized in a reinforcement learning model that

included a unique learning rate parameter for each of the three

outcomes ([11]; see STAR Methods; Figures S1 and S2).

In the current task, a similar bias should lead participants to

prefer the high-Miss stimulus (0.5/0.1 ratio of Miss/Rew�
outcome probabilities). Although the overall choice data showed

only a weak bias over the three choice stimuli (Figure 2A, all

ps > 0.11), simulations of the fitted model were in accord with

this prediction (Figure 2B).

Trial-by-trial switching behavior offers a more detailed way to

look at choice biases, as particular probabilistic trial outcomes

are taken into account. Participants were more likely to switch
Biology 29, 1606–1613, May 20, 2019 1607



Figure 2. Behavioral and Modeling Results
(A) Participants’ biases to select stimuli with different underlying chances of Miss trials.

(B) Biases obtained from simulations of the fitted model.

(C) Average switch probabilities separated by the outcome of the previous trial.

(D) Switch probabilities from simulations of the fitted model.

(E) Weights from the logistic regression on switch behavior, with blue bars reflecting statistically significant predictors.

(F) Linear regression on change in reach angle as a function of signed cursor errors on the trial previous. This analysis is limited to trials in which the participant’s

reach on trial t-1 was accurate, but the cursor was perturbed away from the stimulus (Miss trial). The dark line reflects the mean regression line; light gray lines are

individual regression lines. Error bars represent 1 SEM.

See also Table S2 and Figures S1 and S2.
to a different choice stimulus following Rew� trials compared

to Miss trials (t23 = 5.02, p < 0.001; Figure 2C). Moreover, they

weremore likely to switch after Rew� trials than after Rew+ trials

(t23 = 4.77, p < 0.001), and they showed no difference in switch-

ing rate after Rew+ and Miss trials (t23 = 1.32, p = 0.20). Overall,

participants were, on average, more likely to switch following a

non-rewarded trial (Rew� or Miss) than following a rewarded

one (Rew+; t23 = 2.97, p = 0.007), suggesting that they were

sensitive to receiving a monetary reward from specific choice

stimuli, even though the reward lottery was identical for each.

Critically, simulations of the RL model replicated participants’

choice switching behavior as well (Figure 2D).

In sum, the switching behavior indicates that participants re-

sponded more negatively to Rew� outcomes than to Miss out-

comes, even though both yielded identical economic results.

This finding is consistent with the hypothesis that cues suggest-

ing a failure to properly implement a decision may affect how

value updates are computed.

A logistic regression analysis was used to probe how various

factors influenced switching behavior (Figure 2E). As expected,

earning reward on trial t-1 negatively predicted switching on trial

t (i.e., predicted staying over switching), reflecting reward sensi-

tivity in the task (t test for regression weight difference from 0:

t21 = 3.48, p = 0.002). In contrast, hitting the stimulus on trial

t-1 had a positive impact on the probability of switching on trial

t, driven by the aversive Rew� trials (t21 = 3.32, p = 0.003).
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Both effects were tempered by the Miss trials, which led to

reduced switching (Figure 2C). Consistent with Figure 2A, the

Miss probability regression coefficient negatively predicted

switching (t21 = 3.23, p = 0.004).

Interestingly, the absolute magnitude of the cursor error on

trial t-1 (unsigned error) negatively predicted switching on trial

t; that is, after relatively large errors, participants weremore likely

to repeat the same choice again (t21 = 4.51, p < 0.001). This effect

did not appear to be driven by the veridicality of errors, as neither

the predictor for the veridicality of feedback nor the interaction

between veridicality and error magnitude predicted switching

(t21 = 1.16, p = 0.26 and t21 = 0.67, p = 0.51, respectively). Lastly,

switching behavior did not appear to fluctuate over the duration

of the experiment (‘‘trial #’’ predictor; t21 = 0.72, p = 0.48).

Perturbed cursor feedback was often required to achieve the

desired outcome probabilities for each stimulus, as those prob-

abilities were fixed (see STARMethods). Although the regression

analysis indicated that the veridicality of the feedback did not

directly affect switching behavior, we conducted a few additional

analyses to further explore the potential impact of false feedback

on participants’ behavior. Results from the post-experiment

questionnaire were equivocal: when asked if the feedback was

occasionally altered, the mean response on a 7-point scale

was 4.2, where 1 is ‘‘very confident cursor location was fully

controlled by me,’’ and 7 is ‘‘very confident cursor location was

partially controlled byme.’’ However, it is not clear if the question



Figure 3. Whole-Brain Trial Outcome Contrasts

(A) Results of whole-brain contrasts for Rew+ trials > Rew� andMiss trials (green), Miss trials > Rew� trials (purple), and Rew� trials > Miss trials (orange). In the

reward contrast (green), four significant clusters were observed, in bilateral striatum, ventromedial prefrontal cortex (vmPFC), left orbital-frontal cortex (OFC), and

posterior cingulate cortex (PCC). For the motor error contrast (purple), three significant clusters were observed, one single cluster spanning bilateral premotor

cortex, supplementary motor area (SMA), and the anterior division of the cingulate (ACC), as well as two distinct clusters in both the left and right inferior parietal

lobule (not shown). The Rew� trials > Miss trials contrast showed a single cluster spanning visual cortex.

(B) Beta weights extracted from each reward-contrast ROI for the (orthogonal) Rew� and Miss trial outcomes. Error bars represent 1 SEM.

See also Table S1 and Figures S3 and S4.
itself biased participant’s answers, so further analyses were

conducted.

We examined if adjustments in reaching direction were

responsive to non-veridical errors, as they would be expected

to after veridical errors. We analyzed trial pairs in which the

same stimulus was chosen on two consecutive trials where the

first reach had been accurate but resulted in a false miss. The

analysis showed that heading direction did indeed shift in the

opposite direction of the perturbation on the subsequent trial

(t23 = 6.83, p < 0.001; Figure 2F). This may result from implicit

sensorimotor adaptation, explicit adjustments in aiming, or

both [13]. Taken together, both the regression and movement

analyses indicate that participants responded in a similar

manner to veridical and perturbed feedback. (An additional anal-
ysis of the neural data adds further support to this conclusion;

see below.)

Finally, previous studies have shown that movements toward

high-value choices are more vigorous (i.e., faster) compared to

low value choices [14–16]. Because we obtained continuous

kinematic data, we could test if this phenomenon was present

in our data. Indeed, modeled choice values negatively pre-

dicted MT (regression beta values relative to 0: t23 = 3.27,

p = 0.003; Figure S2). In other words, higher-value choices

were accompanied by faster movements (shorter movement

times). This result agrees with previous research on vigor and

value, and it provides additional model validation, with the

model describing behavioral data that were not involved in

the fitting procedure.
Current Biology 29, 1606–1613, May 20, 2019 1609



Figure 4. Reward Prediction Errors in the Striatum Are Sensitive to Error Type

(A) Average reward prediction error (RPE) beta weights within the striatum ROI, separated by trial outcome.

(B and C) Brain-behavior correlations between striatal RPE betas on Miss trials (y axis), (B) reward sensitivity values from the logistic regression on switching

behavior, and (C) the fitted Miss-trial learning rate parameter from the winning reinforcement learning model. Error bars represent 1 SEM; *p < 0.05.

See also Figures S1 and S3.
Imaging
Our first GLM analysis was focused on whole-brain response

differences across the three trial outcomes. Figure 3A shows

the results of the whole-brain contrasts for reward processing

(Rew+ > Rew� and Miss), as well as execution errors (Miss >

Rew�) and selection errors (Rew� > Miss). The reward contrast

revealed four significant clusters spanning bilateral striatum,

bilateral ventromedial prefrontal cortex (vmPFC), bilateral poste-

rior cingulate (PCC), and a single cluster in left orbital frontal cor-

tex (OFC; see Table S1). These ROIs are broadly consistent with

areas commonly associated with reward [17, 18]. The execution

error contrast (Miss > Rew�) identified three broad clusters: a

single elongated cluster spanning bilateral premotor cortex

(PMC), supplementary motor area (SMA), the anterior division

of the cingulate (ACC), and two distinct clusters in the left and

right inferior parietal lobule (IPL). This pattern is consistent with

previous work on cortical responses to salient motor errors

[19–21]. The reverse contrast, Rew� > Miss, revealed a bilateral

cluster spanning several regions of visual cortex, perhaps due to

the differences in visual feedback.

We examined feedback-locked betas on Rew� andMiss trials

to assay gross differences in activity in the four reward-sensitive

ROIs (Figure 3B), distinct from the more fine-grained parametric

RPE modulations to be explored in the model-driven analysis

(see below). Directly comparing the two negative outcome

trial types showed that average activity in the four ROIs was

similar for Rew� and Miss trials, with no significant differences

seen in the striatum (t19 = 0.87, p = 0.40), vmPFC (t19 = 0.21,

p = 0.84), or OFC (t19 = 0.16, p = 0.88) and a marginal difference

in the PCC (t19 = 1.92, p = 0.07).

To assess whether the reward-related activity was influenced

by our experimental manipulation of feedback, we performed a

control whole-brain analysis comparing rewarded trials (Rew+)

in which the feedback was either veridical or perturbed (we

note that rewarded trials were used as power was too low to

separate error outcomes by veridicality; see STAR Methods).

Here we re-ran the GLM but added a regressor that indicated

the feedback type on Rew+ trials. No significant clusters were
1610 Current Biology 29, 1606–1613, May 20, 2019
observed when contrasting these two trial types, even at a

relaxed significance threshold (p < 0.05). Thus, our analysis of

the neural data further indicates that the participants were insen-

sitive to the motor feedback manipulation.

In our second GLM, separate parametric RPE regressors

for the three possible trial outcomes were constructed by

convolving trial-by-trial RPE values derived from the reinforce-

ment learning model (see STAR Methods) with the canonical

hemodynamic response function. Beta weights for the three re-

gressors were then extracted from the striatum ROI delineated

by the first GLM.

As seen in Figure 4A, striatal activity was parametrically sensi-

tive to trial-by-trial positive RPEs on Rew+ trials (t19 = 2.62,

p = 0.017) and negative RPEs on Rew� trials (t19 = 2.16,

p = 0.044). In contrast, striatal activity did not appear to code

RPEs following Miss trials (t19 = 0.61, p = 0.55). Critically, the

strength of RPE coding was significantly greater on Rew� trials

than onMiss trials (t19 = 2.64, p = 0.016) and greater on Rew+ tri-

als than on Miss trials (t19 = 2.23, p = 0.038), but not significantly

different between the Rew+ andRew� trials (t19 = 0.52, p = 0.61).

Consistent with our hypothesis, that the striatum would be sen-

sitive to the source of errors, these results suggest that striatal

coding of RPEs is attenuated following execution failures. One

consequence of this would be an attenuation of choice value up-

dating on Miss trials, consistent with the observed behavioral

biases (Figure 2).

To further test this hypothesis, we performed correlations be-

tween behavioral and neural parameters (we note that these an-

alyses of individual differences have limited power due to the

modest sample size). First, we correlated participants’ reward

sensitivity, operationalized as the reward predictor in the logistic

regression on switching behaviormultiplied by negative one (Fig-

ure 2E), with the Miss-trial RPE betas from the striatum. This

correlation was significant (r = 0.51, p = 0.020; Figure 4B),

suggesting that participants with stronger negative RPEs on

Miss trials were generally more sensitive to economic

outcomes, and thus treated Miss trials as more aversive. As

described in STAR Methods, this correlation was computed



with sigmoid-transformed sensitivity values, since two partici-

pants showed extreme parameter values in the logistic regres-

sion analysis due to a near-deterministic relationship between

one or more predictors and switching probability. A similar cor-

relation is observed if we exclude those two participants and

repeat the analysis using the raw regression coefficients (r =

0.50, p = 0.035) or perform a nonparametric Spearman correla-

tion with the two participants dummy-coded with maximum

reward sensitivity values (r = 0.53, p = 0.018).

To further test the relationship between the behavioral and

neural results, we also correlated the estimated Miss-trial

learning-rate parameter from the RL model (hMiss; see STAR

Methods) withMiss-trial RPE betas from the striatum. Thismodel

parameter represents the degree to which a participant punishes

a particular choice stimulus after a Miss trial. Here, too, we

observed a positive correlation (r = 0.45, p = 0.046; Figure 4C)

between the brain and behavioral measures.

One additional question concerns the specificity of our effects

to the striatum. Do other regions show the same pattern of RPE

effects? To address this question, we extracted RPE beta values

from the other three reward-sensitive ROIs revealed by the first

GLM (Figure 3). No significant differences between outcome

RPE betas were found across the three areas, though activity

in the vmPFC numerically mirrored the striatal results (Figure S3).

Finally, our taskwas designed to reveal brain areas sensitive to

sensorimotor errors. As mentioned above, the Miss > Rew�
contrast in the first GLM revealed areas sensitive to the presence

of execution errors, controlling for reward (Figure 3A, purple). To

investigate the effect of error magnitude, a fourth parametric re-

gressor was included in the second GLM to reflect the size of un-

signed cursor errors on Miss trials. Consistent with previous

research [22, 23], error magnitude on Miss trials was correlated

with activity in anterior cingulate cortex, bilateral dorsal premotor

(PMd) and primary motor cortices, bilateral superior parietal

lobes (SPLs), ipsilateral dorsal cerebellum (Cb; lobule VI), and

primary and secondary visual cortex (VC; Figure S4; Table S1).

DISCUSSION

The present results demonstrate that perceived movement

execution errors influence reward prediction error (RPE) compu-

tations in the human striatum. When participants did not receive

a reward but properly executed their decision, the striatum pre-

dictably represented the corresponding negative RPE, consis-

tent with much previous experimental work (Figure 4A). Howev-

er, on trials in which a non-rewarded outcome was framed as the

result of an action execution failure, the striatum did not reliably

generate a corresponding negative RPE. These results indicate

that the striatum may have access to information concerning

whether a decision was properly implemented. This was re-

flected in participants’ choice behavior (Figures 2A and 2C)

and can be described by a reinforcement learning model in

which decision execution errors demand a unique step size

parameter ([11]; Figures 2B and 2D; Figures S1 and S2). More-

over, individual differences in behavioral policies were correlated

with differences in striatal RPE coding following execution errors

(Figures 4B and 4C).

These findings fit into a broader reevaluation of the nature of

RPEs in the mesostriatal dopamine system. While a reasonable
hypothesis for our experiment would be that the striatum is pri-

marily sensitive to economic outcomes separate from their

cause, our results suggest that is not the case. Indeed, mounting

evidence suggests that the striatum does not just signal amodel-

free prediction error but is affected by high-level cognitive states,

concerning, for instance, model-based predictions of future re-

wards [5], sampling from episodic memory [8], top-down atten-

tion to relevant task dimensions [6], and the holding of stim-

ulus-response relationships in working memory [9]. We believe

the present results add to this growing body of evidence,

showing that contextual cues concerning the implementation

of a decision affect if and how the value of that decision is up-

dated by a prediction error.

We note that this putative gating phenomenon—the dimin-

ished negative RPE in the striatum—was not categorical; indeed,

participants displayed varying degrees of gating both behavior-

ally and neurally (Figure 2 and Figures 4B and 4D). One specula-

tion could be that gating is a function of how optimistic a partic-

ipant is that they could correct for their motor errors in the future.

According to this hypothesis, gating is useful only if one is confi-

dent in their execution ability and is likely to persist with a deci-

sion until successful execution allows them to glean information

from the selected stimulus. On the other hand, if one is not confi-

dent in their ability to execute a movement, a strong negative

RPE might be generated upon an execution error, steering

them away from that choice and its associated action in the

future. This trade-off suggests that other brain regions, perhaps

upstream of the basal ganglia, act to modulate the coding of

RPEs following movement errors. Future studies should be de-

signed to identify these regions and investigate how they regu-

late RPE coding during reinforcement learning.

Differences in participant strategies could explain a curious

result in a previous study [11]: participants with degeneration

of the cerebellum, which results in problems with both motor

learning and motor execution, showed diminished gating

behavior relative to controls; that is, they avoided decisions

that were difficult to execute at the cost of larger rewards.

We had hypothesized that the cerebellum may play a role in

a putative gating mechanism, perhaps communicating sensory

prediction errors to the basal ganglia via established bidirec-

tional connections [24]. However, significant cerebellar activity

only survived statistical correction in our analysis of cursor er-

ror size (Figure S4; Table S1), but not our main motor error

contrast (Figure 3A). A recent behavioral follow-up to our pre-

vious study suggests that cerebellar-dependent motor error

signals are likely not affecting choice behavior in this kind of

task [12]; rather, participants may use a cognitive model of

the causal structure of the task to guide their decisions [25].

It would be reasonable to assume that individuals with cere-

bellar degeneration may have a greater propensity to avoid

choices associated with execution errors due to reduced con-

fidence in their ability to successfully control and improve their

movements.

Although we are interpreting the current results in the context

of perceivedmotor execution errors, an alternative explanation is

that participants did not fully believe the feedback they received

because it was often perturbed. That is, participants may have

tried to infer whether they truly caused an observed outcome,

and the gating of striatal RPEs could reflect instances in which
Current Biology 29, 1606–1613, May 20, 2019 1611



participants inferred that the outcome was manipulated. How-

ever, we found no evidence of different physiological responses

to veridical and perturbed feedback in terms of the striatal

response on rewarded trials (there was insufficient power to

perform the same analysis on unrewarded trials). Moreover,

the behavioral results suggest that error veridicality was not a

strong predictor of participants’ choices (Figure 2E) nor their

movement kinematics (Figure 2F). Either way, future research

could test the specificity of these results. Would the observed

attenuation of RPEs happen if the lack of reward was attributed

to a salient external cause, for instance, if the participant’s hand

was knocked away by an external force? The results of this study

may reflect a unique role of intrinsically sourced motor execution

errors in RPE computations, or a more general effect of any arbi-

trary execution failure, whether internally or externally generated.

Research on the computational details of instrumental learning

has progressed rapidly in recent years, and the nature of one

fundamental computation in learning, the reward prediction er-

ror, has been shown to be more complex than previously

believed. Our results suggest that prediction errors update

choice values in a manner that incorporates the successful im-

plementation of those choices, specifically, by ceasing to update

value representations when a salient execution failure occurs.

These results may add to our understanding of how reinforce-

ment learning proceeds in more naturalistic settings, in which

successful action execution is often not trivial.
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Software and Algorithms

MATLAB 2017b MathWorks https://www.mathworks.com

FSL 5.98 FMRIB, Oxford, UK https://fsl.fmrib.ox.ac.uk/fsl/fslwiki

SPM 12 [26] https://www.fil.ion.ucl.ac.uk/spm

ICA-AROMA [27] https://github.com/maartenmennes/ICA-AROMA

Psychophysics Toolbox [28] http://psychtoolbox.org

Deposited Data

Raw data This paper https://osf.io/d564h
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Samuel

McDougle (mcdougle@berkeley.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Participants
A total of 24 participants were tested (11 female; age range: 18–42 years). The participants were fluent English speakers with normal

or corrected-to-normal vision. They were all right-handed as confirmed by the Edinburgh Handedness Inventory [29]. Participants

were paid $20.00 per hour for 2 h of participation, plus a monetary bonus based on task performance (mean bonus = $12.00).

The protocol was approved by the institutional review board at Princeton University andwas performed in accordancewith the decla-

ration of Helsinki.

All 24 participants’ data were included in behavioral and modeling analyses. We excluded four participants from the imaging anal-

ysis due to excessive headmotion (a priorimaximummovement threshold = 3mm), leaving a final imaging sample of 20 participants.

METHOD DETAILS

Task and Apparatus
The experimental task was a modified version of a multi-armed bandit task commonly used in studies of reinforcement learning [30].

On each trial, three stimuli were presented, and the participant was required to choose one (Figure 1). The participant was instructed

that each stimulus had some probability of yielding a reward and that they should try and earn as muchmoney as possible. Critically,

the participant was told that each trial was an independent lottery (i.e., that the outcome on trial t-1 did not influence the outcome on

trial t), and that they had a fixed number of trials in the task over which to maximize their earnings.

In a departure from the button-press responses used in standard versions of bandit tasks, participants in the current study were

required to indicate their decisions by making a wrist movement with the right hand toward the desired stimulus. The movement was

performed by moving a wooden dowel (held like a pen) across an MRI-compatible drawing tablet. The right hand was positioned on

the tablet, and the tablet rested on the participant’s lap, supported by pillow wedges. Participants were instructed to maintain this

posture for the duration of the scanning session. The visual display was projected on a mirror attached to the MRI head coil, and the

participant’s hand and the tablet were not visible to the participant. All stimuli were displayed on a black background.

To initiate each trial, the participant moved their hand into a start area, which corresponded to the center of the tablet and the visual

display. The start area was displayed as a hollow white circle (radius 0.75 cm) and a message, ‘‘Go to Start,’’ was displayed until the

hand reached the start position. To assist the participant in finding the start position, a white feedback cursor (radius 0.25 cm) cor-

responding to the hand position was visible when the pen was within 4 cm of the start circle. As soon as the cursor entered the start

circle, the start circle filled in with white and the cursor disappeared, and the three choice stimuli were displayed along with the text

‘‘Wait’’ displayed in red font. The three choice stimuli were small cartoon images of slot machines (0.6 cm by 0.6 cm). They were

presented at the same locations for all trials, with the three stimuli displayed along an invisible ring (radius 4.0 cm) at 30�, 150�,
and 270� degrees relative to the origin. If the hand exited the start circle during the ‘‘Wait’’ phase, the stimuli disappeared and the

‘‘Go to Start’’ phase was reinitialized.

After an exponentially determined jitter (mean 2 s, truncated range = 1.5 s - 6 s), the ‘‘Wait’’ text was replaced with the message

‘‘GO!’’ in green font. Reaction time (RT) was computed as the interval between the appearance of the go signal and themoment when
e1 Current Biology 29, 1606–1613.e1–e5, May 20, 2019
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the participant’s hand left the area corresponding to the start circle. The participant had 2 s to begin the reach; if the RT was greater

than 2 s, the trial was aborted and the message ‘‘Too Slow’’ appeared. Once initiated, a reach was considered complete at the

moment when the radial amplitude of the movement reached 4 cm, the distance to the invisible ring. This moment defined the move-

ment time (MT) interval. If the MT exceeded 1 s, the trial was aborted and the message ‘‘Reach Faster’’ was displayed.

The feedback cursor was turned off during the entirety of the reach. On trials in which the reach terminated within the

required spatial boundaries (see below) andmet the temporal criterion, reach feedback was provided by a small hand-shaped cursor

(dimensions: 0.35 cm X 0.35 cm) that reappeared at the end of the reach, displayed along the invisible ring. The actual position of this

feedback cursor was occasionally controlled by the experimenter (see below), although the participant was led to believe that it cor-

responded to their veridical hand position at 4 cm. To help maintain this belief, the trial was aborted if the reach was > ± 25� degrees
away from any one of the three stimuli, and themessage ‘‘Please ReachCloser’’ was displayed. The cursor feedback remained on the

screen for 1.5 s, and the participant was instructed to maintain the final hand position during this period. In addition to the starting

circle, slot machines, and, when appropriate, feedback cursor, the display screen also contained a scoreboard (dimensions: 3.3 cmX

1.2 cm), presented at the top of the screen. The scoreboard showed a running tally of participant’s earnings in dollars. At the end

of the feedback period, the entire display was cleared and replaced by a fixation cross presented at the center for an exponentially

jittered inter-trial interval (mean 3 s, truncated range = 2 - 8 s).

Assuming the trial was successfully completed (reach initiated and completed in a timely manner, and terminated within 25� of a
slot machine), there were three possible trial outcomes (Figure 1). Two of these outcomes corresponded to trials in which the hand-

shaped feedback cursor appeared fully enclosed within the chosen stimulus, indicating to the participant that they had been suc-

cessful in querying the selected slot machine. On Rew+ trials, the feedback cursor was accompanied by the appearance of a small

money-bag cartoon above the chosen stimulus and $0.10 would be added to the participant’s total. On Rew� trials, the feedback

cursor was accompanied by the same money-bag overlaid with a red ‘‘X’’ and no money was added to the participant’s total. The

third outcome consisted of Miss trials, in which the feedback cursor appeared outside the chosen stimulus, indicating an execution

error. No money bag was presented on these trials and the monetary total remained unchanged, as in Rew� trials. Participants were

informed at the start of the experiment that, like Rew� trials, no reward would be earned on trials in which their reach failed to hit the

chosen stimulus. Importantly, the probabilities of each outcome for each choice stimulus were fixed (see below), and were not

directly related to the actual reach accuracy of the participant.

In summary, of the three possible outcomes, one yielded a positive reward and two yielded no reward. For the latter two outcomes,

the feedback distinguished between trials in which the execution of the decision was signaled as accurate but the slot machine failed

to provide a payout (Rew�), and trials in which execution was signaled as inaccurate (Miss).

For all three stimuli, the probability of obtaining a reward (Rew+) was 0.4. Stimuli differed in their ratio of Rew� and Miss proba-

bilities, with each of the three stimuli randomly assigned to one of the following ratios for these two outcomes: 0.5/0.1 (lowmiss), 0.3/

0.3 (medium miss), and 0.1/0.5 (high miss). In this manner, the stimuli varied in terms of how likely they were to result in execution

errors (and, inversely, selection errors), but not in the probability of obtaining a reward. Trial outcomes were probabilistically deter-

mined once a reach was initiated toward a particular stimulus. The positions of the choice stimuli assigned to the three Rew�/Miss

probability ratios were counterbalanced across participants. Because of the fixed outcome probabilities, there is no optimal choice

behavior in this task; that is, participants would earn the same total bonus (in the limit) regardless of their choices, consistent with our

previous study [11]. Behavioral biases therefore reflected their attitude toward different kinds of errors.

Tomaintain fixed probabilities for each stimulus, we varied whether the cursor feedback was veridical on a trial-by-trial basis. Once

a stimulus was selected (i.e., the participant initiated a reach toward the stimulus), the outcome (i.e., Rew+, Rew�, or Miss) was

determined based on the fixed probabilities. If the true movement outcome matched the probabilistically determined outcome —

either because the participant hit the stimulus on a Rew+ or Rew� trial, or missed the stimulus on a Miss trial — the cursor position

was veridical. However, if the true movement outcome did not match the probabilistically determined outcome, the cursor feedback

was perturbed: If the movement hadmissed the stimulus (> ± 3� from the center of the stimulus) on Rew+ and Rew� trials, the cursor

was depicted to land within the stimulus. If the movement had hit the stimulus on a Miss trial, then the cursor was depicted to land

outside the stimulus. The size of the displacement onMiss trials was drawn from a skewed normal distribution (mean 19 ± 2.3�), which

was truncated to not be less than 3� (the stimulus hit threshold) or greater than 25� (the criterion required for a valid reach), thus

yielding both a range of salient errors, but also keeping errors within the predetermined bounds (values were determined through

pilot testing). If the participant reached accurately but a Miss trial was induced, the direction of the displacement from the stimulus

was randomized.

Overall, we had to perturb the cursor position on 58.0% of trials. Most of these (46.9% of trials) were ‘‘false hits,’’ where the feed-

back cursor was moved into the stimulus region following an actual miss. 11.1% of trials were false misses, in which the cursor was

displayed outside the stimulus following an actual hit. We had designed theMiss-trial perturbations to balance the goal of keeping the

participants unaware of the feedback perturbations, while also providing large, visually salient execution errors. The mean size of the

perturbed Miss trial errors was 10.98� larger than veridical Miss trial errors (t23 = 39.24, p < 0.001), raising the possibility that partic-

ipants could be made aware of the perturbations. Given the difficulty of the reaching task (i.e., no feedback during the movement, a

transformedmapping from tablet to screen, small visual stimuli, etc.) and the strict temporal (< 1 s) and spatial (within 25� of the stim-

ulus) movement constraints, we expected that participants would be unaware of the feedback manipulation (see Results).
Current Biology 29, 1606–1613.e1–e5, May 20, 2019 e2



The experimental task was programmed in MATLAB (MathWorks), using the Psychophysics Toolbox [28]. Participants were

familiarized with the task during the structural scan and performed 30 practice trials for which they were not financially rewarded.

Participants received a post-experiment questionnaire at the end of the task to query their awareness of perturbed feedback.

fMRI data acquisition
Whole-brain imaging was conducted on a 3T Siemens PRISMA scanner, using a 64-channel head coil. MRI-optimized pillows

were placed about the participant’s head to minimize head motion. At the start of the scanning session, structural images were

collected using a high-resolution T1-weighted MPRAGE pulse sequence (13 13 1 mm voxel size). During task performance, func-

tional images were collected using a gradient echo T2*-weighted EPI sequence with BOLD contrast (TR = 2000 ms, TE = 28 ms, flip

angle = 90�, 33 33 3mm voxel size; 36 interleaved axial slices). Moreover, a fieldmapwas acquired to improve registration and limit

image distortion from field inhomogeneities (for one participant a field map was not collected).

Functional data were collected in a single run that lasted approximately 40 min. For one participant, the run was split into two parts

due to a brief failure of the drawing tablet. Because of the self-paced nature of the reaching task (i.e., variable time taken to return to

the start position for each trial, reach, etc.), the actual time of the run, and thus number of total TRs, varied slightly across participants.

The run was terminated once the participant had completed all 300 trials of the task.

QUANTIFICATION AND STATISTICAL ANALYSIS

Behavioral variables and analysis
Trials were excluded from the analysis if the reachwas initiated too slowly (RT > 2 s; 0.4 ± 0.7%of trials), completed too slowly (MT > 1

s; 2.4 ± 4.5% of trials), or terminated out of bounds (Reach terminated > 25� from a stimulus; 1.2 ± 2.0% of trials). For the remaining

data, we first evaluated the participants’ choice biases: For each stimulus, the choice bias was computed by dividing the number of

times the participant chose that stimulus by the total number of choice trials. Second, we looked at switching biases. These were

computed as the probability that the participant switched to a different stimulus on trial t given the outcome of trial t-1 (Rew+,

Rew�, or Miss). An additional switching analysis was conducted based on only the reward outcome of trial t-1 (i.e., rewarded versus

non-rewarded trials) by collapsing Rew� and Miss trials together. One-sample t tests were used to evaluate if differences in choice

and switching biases deviated significantly from each other.

To further evaluate potential predictors of switching, a logistic regression was conducted using choice switching on trial t as the

outcome variable (1 for switch, 0 for stay). Seven predictors were entered into the regression: 1) The reward outcome of trial t-1 (1 for

reward, 0 for no reward), 2) the movement execution outcome of trial t-1 (1 for a hit, 0 for a miss), 3) the Miss/Rew� trial probability

ratio of the chosen stimulus on trial t, 4) the unsigned cursor error magnitude on trial t-1 (angular distance from feedback cursor to

stimulus), 5) the veridicality of the feedback on trial t-1 (1 for veridical feedback, 0 for perturbed feedback), 6) the interaction of un-

signed error magnitude X the veridicality of the feedback on trial t-1, and 7) the current trial number. The multiple logistic regression

was computed using the MATLAB function glmfit, with a logit link function. All predictors were z-scored. One-sample t tests were

used to test for significant regression weights across the sample. For two out of the 24 participants, near complete separation

was observed with the reward sensitivity regressor (e.g., they rarely switched after a Rew+ trial, or always switched after failing to

receive a reward). These participants were excluded from the initial regression analysis (Figure 2E), although they were included

in other analyses in which we normalized the regression parameters with a sigmoid function (Figure 4B; see Results).

We also analyzed howmovement feedback altered reaching behavior to test if participants were actively attempting to correct their

execution errors. In particular, we were interested in whether participants were sensitive to the non-veridical feedback provided on

trials in which the feedback position of the cursor was perturbed. To assess this, we focused on trial pairs in which consecutive rea-

ches were to the same stimulus and the first trial of the pair was accurate (< ± 3� from stimulus’s center), but the cursor feedback was

displayed fully outside of the stimulus, indicating a Miss (the analysis was conducted this way to limit simple effects of regression to

the mean reaching angle). A linear regression was performed with the observed signed cursor error on the first trial of the pair as the

predictor variable and the signed change in reach direction on the second trial as the outcome variable. One-sample t tests were used

to test for significant regression weights.

Modeling analysis of choice behavior
A reinforcement-learning analysis was conducted to model participants’ choice data on a trial-by-trial basis and generate reward

prediction error (RPE) time-courses for later fMRI analyses. We tested a series of temporal difference (TD) reinforcement-learning

models [31], all of which shared the same basic form:

dt = rt �QtðaÞ (Equation 1)
Qt+ 1ðaÞ = QtðaÞ+ hdt (Equation 2)

where the value (Q) of a given choice (a) on trial t is updated according to the reward prediction error (RPE) d on that trial (the difference

between the expected valueQ and received reward r), with a learning rate or step-size parameter h. All models also included a decay
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parameter g [32], which governed the decay of the threeQ-values toward their initial value (assumed to be 1/the number of actions, or

1/3) on every trial:

Q=Q+gð1=3 � QÞ (Equation 3)

The decay parameter was important for model fitting, likely due to both the lack of any optimal slot machine and the stationary

reward probabilities – many participants switched their choices often. Models without the decay parameter performed significantly

worse than those with this parameter (data not shown).

Our previous results showed that participants discount Miss trials, suggesting a tendency to persist with a given choice following a

perceived execution error [11, 12] more often than following a choice error (Rew� trials). However, it is not known if this tendency is

driven by RPE computations, or can also arise from a different source. To model an additional route to Miss discounting, we included

a persistence parameter, F, in the softmax computation of the probability of each choice (P),

P að Þ= emiss prev F�choice prevð Þ+ bQt að ÞP3
j = 1e

miss prev F�choice prevð Þ+ bQt jð Þ (Equation 4)

where ‘‘miss_prev’’ and ‘‘choice_prev’’ are indicator vectors, indicating, respectively, whether the previous trial was a Miss (1 for

Miss, 0 for Rew+/Rew�) and which action was chosen, and b is the inverse temperature parameter. If F is positive, the learner is

more likely to repeat the same choice after a Miss trial (a bonus of F is given to that option). If F is negative, the learner is more likely

to switch after aMiss due to a penalty ofF. This parameter represents a bias factor distinct fromRPE-driven value updating [8], as the

bonus (or penalty) is fixed regardless of the value of the chosen option.

We modeled reinforcement learning based on trial outcomes as follows: In the Standard(2h) model, distinct learning rates, h, were

included to account for updating following negative RPEs (unrewarded trials) and positive RPEs (rewarded trials),

Qt + 1ðaÞ=
�

QtðaÞ + hRew+ dt; if Rew+ on trial t
QtðaÞ + hRew�;Missdt; if Rew� or Miss on trial t

(Equation 5)

where hRew+ and hRew�,Miss are the learning rates for updates following Rew+ orMiss/Rew� trials, respectively. Allowing positive and

negative RPEs to update Q values at different rates has been shown to provide better fits to human behavior compared to models in

which a single learning rate is applied after all trials [33, 34]. We also included a second variant of this model, the Standard(no-F)

model, that was identical to the Standard(2h) model but did not include the F parameter.

Two other models were included, based on our previous study in which negative outcomes could result from execution or selection

errors [11]. One model, the 3hmodel (or the gating model), was similar to the Standard(2h) model, except that it had unique learning

rates for each of the three possible trial outcomes (hRew+, hRew�, and hMiss). This model allows for values to be updated at a different

rate following execution errors (Miss) or selection errors (Rew�). Lastly, the Probability model separately tracked the probability of

successful execution (E) for each stimulus and the likelihood (V) of receiving a reward if execution was successful:

Et+1ðaÞ=EtðaÞ+ hprobd t; prob (Equation 6)
Vt +1ðaÞ=
�
VtðaÞ + hpayoffdt; payoff ; if Rew+ or Rew� on trial t

VtðaÞ; if Miss on trial t
(Equation 7)
Qt+ 1ðaÞ=Et+1ðaÞVt+ 1ðaÞ (Equation 8)

where dt, prob and dt, payoff represent, respectively, prediction errors for whether the current action was successfully executed (where

r = 1 on Rew+/Rew� trials and r = 0 on Miss trials), and if a reward was received given that execution was successful.

Using the MATLAB function fmincon, all models were fit to each participant’s observed choices outcomes by finding the param-

eters that maximize the log posterior probability of the choice data given the model. To simulate action selection, Q-values in all

models were converted to choice probabilities using a softmax logistic function (Equation 4). All learning rate parameters (h) were

constrained to be between �1 and 1; negative values were permitted given that we did not have an a priori reason to assume hMiss

would be positive, and thus opted to be consistent across all learning-rate parameters and models. The persistence parameter (F)

was constrained to be between �5 and 5, based on constraints for a similar parameter in a recent study characterizing empirical

priors in RL models [35]. The decay parameter (g) was constrained to be between 0 and 1, reflecting the range from no decay (0)

to maximum decay (1). The inverse temperature parameter (b) was constrained to be between 0 and 50 [35], and a Gamma(2,3) prior

distribution was used to discourage extreme values of this parameter [6]. Q-values for each stimulus were initialized at 1/3.

The fitting procedure was conducted 100 times for each model to avoid local minima during optimization, using different random-

ized starting parameter values for each iteration. The resulting best fit model was used in further analyses. Model fit quality was eval-

uated using the Akaike information criteria [36, 37].

After model fitting and comparison, we performed a simulate-and-recover experiment on each of the four models to assess model

confusability [38]. Choices were simulated for each model using the best-fit parameters of each of the 24 participants, yielding 24
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simulations per model over 10 total iterations. Simulated data were then fit with each model (using 20 randomized vectors of starting

parameters for each fit to avoid local minima) to test whether the correct models were recovered. Confusion matrices were created

comparing differences in summed Aikake weights [39], as well as the percent of simulations fit best by each model.

Simulated choice data (from the winning model) were created to investigate the model’s ability to replicate the main behavioral

findings (Figures 2B and 2D). Simulated choice data were generated 100 times for each participant, using that participant’s optimized

parameters. Choice preferences (Figure 2B) and switch probabilities (Figure 2D) were extracted and averaged over the 100 simula-

tions. For visualization purposes, standard errors were computed on the mean choice preferences and switch probabilities obtained

for each simulated participant, using the true sample size (24).

fMRI data analysis
Preprocessing and data analysis were performed using FSL v. 5.98 (FMRIB) and SPM12. Given the movement demands of the task,

multiple steps were taken to assess and minimize movement artifacts. After manual skull-stripping using FSL’s brain extraction tool

(BET), we performed standard preprocessing steps, registering the functional images to MNI coordinate space using a rigid-body

affine transformation (FLIRT), applying the field map correction, performing slice timing correction, spatially smoothing the functional

data with a Gaussian kernel (8 mm FWHM), and attaining six realignment parameters derived from standard motion correction

(MCFLIRT). To identify and remove components identified as head-motion artifacts, we then applied the independent components

motion-correction algorithm ICA-AROMA [27] to the functional data. As a final preprocessing step, we temporally filtered the data

with a 100 s high-pass filter. Based on visual inspection of the data, four participants were excluded from the imaging analysis, before

preprocessing, due to excessive (> 3 mm pitch, roll, or yaw) head motion.

Three GLM analyses were performed. For all GLMs, we imposed a family-wise error cluster-corrected threshold of p < 0.05 (FSL

FLAME 1) with cluster-forming threshold p < 0.001. Task-based regressors were convolved with the canonical hemodynamic

response function (double Gamma), and the six motion parameters were included as regressors of no interest.

The first GLM was designed to functionally define ROIs that were sensitive to reward. Trial outcome regressors for the three trial

types (Rew+, Rew�, Miss) were modeled as delta functions concurrent with visual presentation of the trial outcome. Task regressors

of no interest included boxcar functions that spanned the wait and reach periods, and invalid trials (i.e., excessive RT or MT, or

reaches angled too far from a stimulus). The contrast Rew+ > (Rew� and Miss) was performed to identify reward-sensitive ROIs.

Resulting ROIs were visualized, extracted, and binarized using the xjview package for SPM12 (http://www.alivelearn.net/xjview).

Beta weights were extracted from the resulting ROIs using FSL’s featquery function. To identify areas sensitive to different error

types, while controlling for reward, we also tested two additional trial outcome contrasts: Miss > Rew� and Rew� > Miss.

A second GLM was used to measure reward prediction errors (RPEs). Three separate parametric RPE regressors, corresponding

to RPE time courses for each outcome (delta functions at the time of feedback), were entered into the GLM to account for variance in

trial-by-trial activity not captured by the three binary outcome regressors (which were also included in the model as delta functions at

the identical time points). Beta weights for each RPE regressor were extracted from the functional reward ROIs obtained from the first

GLM using FSL’s featquery function. A fourth parametric regressor was entered into the GLM to identify brain areas parametrically

sensitive to unsignedmotor execution error magnitude. The regressor of interest here was limited toMiss trials, and included a single

parametric unsigned cursor error regressor, which tracked themagnitude of angular cursor errors onMiss trials. Nuisance regressors

included the wait period, reach period, invalid trials, and the three outcome regressors.

A third GLM was constructed as a control analysis to measure potential neural effects of feedback perturbations on reward pro-

cessing. This GLMwas identical to the first GLM, but was designed to compare Rew+ trials where the cursor feedback was veridical

(the hand passed within the bounds of the stimulus), to Rew+ trials where the cursor feedback was perturbed (the hand missed the

stimulus but the feedback signaled an accurate reach). Here, outcome regressors for Rew+ trials were separated by feedback verid-

icality (a similar analysis on perturbed versus veridical execution error trials was not performed due to insufficient power).

All voxel locations are reported in MNI coordinates, and all results are displayed on the average MNI brain.

DATA AND SOFTWARE AVAILABILITY

Raw behavioral and imaging data, and model code, will be placed at http://osf.io/d564h upon publication.
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