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Abstract—Post-error slowing (PES) — a relative increase in response time for a decision on trial t given an error on
trial t — 1 — is a well-known effect in studies of human decision-making. Post-error processing is reflected in neu-
ral signatures such as reduced activity in sensorimotor regions and increased activity in medial prefrontal cortex.
PES is thought to reflect the deployment of executive resources to get task performance back on track. This pro-
vides a general account of PES that cuts across perceptual decision-making, memory, and learning tasks. With
respect to PES and learning, things are complicated by the fact that learning often reflects multiple qualitatively
different processes with distinct neural correlates. It is unclear if multiple processes shape PES during learning,
or if PES reflects a policy for reacting to errors generated by one particular process (e.g., cortico-striatal reinforce-
ment learning). Here we provide behavioral and computational evidence that PES is influenced by the operation of
multiple distinct processes. Human subjects learned a simple visuomotor skill (arbitrary visuomotor association
learning) under low load conditions more amenable to simple working memory-based strategies, and high load
conditions that were putatively more reliant on trial-by-trial reinforcement learning. PES decreased with load,
even when the progress of learning (i.e., reinforcement history) was accounted for. This result suggested that
PES during learning is influenced by the recruitment of working memory. Indeed, observed PES effects were
approximated by a computational model with parallel working memory and reinforcement learning systems that
are differentially recruited according to cognitive load.

This article is part of a Special Issue entitled: SI: Error Processing. © 2021 IBRO. Published by Elsevier Ltd. All rights reserved.
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INTRODUCTION What about PES during learning? It is reasonable to
assume that PES would also be present in learning
tasks, where performance should be monitored on an
ongoing basis. Indeed, one influential study using a
standard reinforcement learning task showed that PES
does indeed occur during instrumental learning, is
linearly related to a computationally derived reward
prediction error, and covaries with frontal theta power
(Cavanagh et al., 2010). In addition to demonstrating
PES during instrumental learning, these findings linked

Why do people typically slow down after making errors?
This intuitive behavior resonates in folk psychology, for
example, when a coach instructs a pupil to “slow down
and focus” after they err. The large body of research on
post-error slowing (PES; Rabbitt, 1966) typically uses lab-
oratory tasks requiring rapid decision-making, such as
perceptual judgment (e.g., dot-motion discrimination;
Purcell and Kiani, 2016) and response conflict tasks

Ee? thel Stroop.tadsk; Bodtvintickhe.t aI.,I2001)r,1 vtvhekre Tfég PES to a theoretical construct of error derived from inter-
rial Involves an independent choice. In such tasks, nally represented stimulus or action values (Schuliz et al.,

is often thought of as a compensatory mechanism to 1997).
improve future goal-directed behavior by recruiting cogni-
tive control (Dutilh et al., 2012a). This cognitive control
account has been linked to activities in the medial pre-
frontal cortex (Botvinick et al., 2001; Gehring and
Fencsik, 2001; Kerns, 2004; Narayanan and Laubach,
2008; Cavanagh et al., 2010; Danielmeier et al., 2011),
a key correlate of executive functioning.

Work over the past several years has shown that in
many human instrumental learning tasks, multiple
processes contribute to the learning curve. For example,
a body of research by Collins and colleagues shows
that during the learning of simple visuomotor skills (i.e.,
the learning of arbitrary visuomotor associations), both
working memory strategies and incremental
reinforcement learning simultaneously contribute to
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Collins, 2021). Similarly, simple sequential instrumental
learning tasks have revealed (at least) two dissociable
learning systems — “model-based” and “model-free” rein-
forcement learning — with the former involving the repre-
sentation of state transitions and the latter involving the
caching of a running average of action outcomes (Daw
et al,, 2011; Doll et al.,, 2012; Otto et al., 2015). The
model-based process has been linked to cognitive control
and working memory systems (Otto et al., 2015), while
the model-free process has been linked to canonical
cortico-striatal learning systems (Glascher et al., 2010).

These findings highlight a lacuna in accounts of PES
during instrumental learning — is the relationship
between PES and learning mediated by one particular
learning system? Here we propose that cognitive
decision-making processes, which operate alongside
reinforcement learning processes, shape PES effects.
Consequently, PES during learning should be affected
by cognitive load in a manner predicted by a multi-
system account of learning. This view would accord with
neurophysiological findings in both humans and model
organisms that link PES with processing in the
prefrontal cortex (Gehring and Fencsik, 2001;
Narayanan and Laubach, 2008). Moreover, this prediction
follows from results in the category learning literature
demonstrating that PES is more closely related to adop-
tion of “rule-based” learning strategies linked to prefrontal
function than incremental “information integration” learn-
ing strategies linked to striatal function (Ashby and
Maddox, 2005; Tam et al., 2013). If confirmed, this result
would complicate the assumption that PES during learn-
ing is diagnostic of error monitoring within one particular
learning system.

We analyzed a large data set (total N = 119) from two
previously-published studies (Collins and Frank, 2012;
Collins and Frank, 2018), where human subjects learned
arbitrary visuomotor mappings under varying cognitive
loads. Load was operationalized as the “set size” (i.e.,
the number of unique visuomotor associations to be
learned) in a given task block. Nearly a decade of
research using this method (Collins and Frank, 2012;
McDougle and Collins, 2021) has confirmed that both
working memory strategies (i.e., active memory traces
of correct stimulus—response associations) and conven-
tional reinforcement learning processes (i.e., trial-by-trial
integration of stimulus—response values) can operate in
parallel. Such data provide a natural testbed for charac-
terizing how PES might relate to different learning
strategies.

EXPERIMENTAL PROCEDURES
Arbitrary visuomotor association learning task

Detailed methods for the behavioral task can be found in
the source studies (Collins and Frank, 2012; Collins and
Frank, 2018), though we offer a summary here. The pro-
tocol for all behavioral tasks was approved by the institu-
tional review board at Brown University and all subjects
gave informed consent. A combined sample size of
N = 119 was included in our analysis, and consisted of
neurologically healthy, right-handed, young-adult partici-

pants with normal or corrected-to-normal vision. The
design of the task is depicted in Fig. 1. Subjects were
seated in front of a computer monitor where they
responded to stimuli using a USB computer keyboard.
Subjects were tasked with learning which of three
responses (one of three button presses, using the “J,”
“K,” or “L” keys) was associated with each presented
image in order to maximize reward feedback. Key
presses (e.g. J, K, or L) were produced with the index,
middle, or ring finger, respectively. On correct trials, pos-
itive feedback (“+1” points) was displayed centrally in
green font, and on incorrect trials, negative feedback
(“0” points) was displayed centrally in red font. Subjects
had to respond within 1.4 seconds to receive feedback.
We excluded trials where responses were too slow or
exceedingly rapid (<200 ms).

Each experiment consisted of several distinct blocks
of trials. Unique sets of arbitrary, discriminable visual
images were used in each block (e.g., shape line-
drawings, colored blobs, vegetables, vehicles, scenes,
etc.). Each block was associated with a particular load
(or “set size”), defined as the number of individual
stimulus—response associations the subject was
required to learn during that block. Block ordering was
designed to approximate an even distribution of high
and low load blocks across the two halves of the
experiment, and to avoid repeated blocks of the same
load (>2 in a row). Each experiment was completed in
a single session without breaks.

On each trial, one image was displayed on screen at a
time over a black background (stimulus visual angle,
~8°). Each stimulus was presented for a minimum of 9
iterations over the block, with a maximum of 15
iterations. Blocks were complete after either 15
iterations of each stimulus were seen, or when subjects
selected the correct action for three of the four last
iterations for all stimuli. The specific sequence of stimuli
within a block was pseudorandomized. In the first data
set (from Collins and Frank, 2012) 18 blocks were com-
pleted (loads 1-6; load = 1 was not analyzed here as it
was not implemented in both data sets; average number
of trials = 670; experiment time: ~45 minutes), and in
the second data set (from Collins and Frank, 2018) 22
blocks were completed (loads 2-6; average number of tri-
als = 750; experiment time: ~50 minutes). Across all
subjects, the mean number of stimulus iterations experi-
enced for loads 2-6 was, respectively, 9.7, 9.9, 10.1,
11.0, and 11.7, and the mode was 9 iterations across all
loads. Thus, while subjects completed n*iterations more
trials per block as load increased by n, the number of iter-
ations performed per stimulus were comparable across
loads.

Behavioral analysis

Learning curves were computed by taking the mean
percent correct (i.e., percent trials where subjects
performed the correct action in response to a stimulus)
relative to the stimulus iteration. This allows us to
analyze learning with respect to each stimulus, rather
than with respect to the raw number of trials (which is
linearly confounded with load). Reaction time (RT) was
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Fig. 1. Task. In this arbitrary visuomotor association learning task, subjects learn stimulus—response associations over independent trial blocks.
Example block designs are shown on the left, demonstrating how the cognitive load manipulation is implemented. Within each block, stimuli were
presented in a pseudorandomized sequence (right), and each stimulus was seen 9-15 times within a block.

computed as the amount of time (in seconds) between the
appearance of the stimulus and the moment of the key
press.

A key recent study revealed that conventional
operationalizations of PES — simply analyzing response
times on all trials that follow errors versus correct
responses — are susceptible to significant temporal
confounds (Dutilh et al., 2012b). As demonstrated by
Dutilh et al. (2012b), PES can be masked (or erroneously
amplified) by global changes in accuracy, speed, atten-
tional vigilance, and meta-learning across an experiment.
To address this issue those authors developed a simple
solution: PES should be computed on pairwise compar-
isons of RTs within strings of trials, wherein the error of
interest is flanked by (at least) two correct trials preceding
it and another correct trial succeeding it. PES is then
quantified as the difference between RTs on the trial after
the error versus the trial just before the error.

This so-called “robust” method (Dutilh et al., 2012b)
can mostly account for the aforementioned global con-
founds and was thus used throughout our analyses. Crit-
ically, these global confounds are especially present in
learning tasks, where accuracy and speed are not evenly
distributed over ftrials. Moreover, to control for the well-
known effect of trial repetition on RT (Hale, 1969), effects
which are avoided in typical decision-making tasks with
independent trials, we did not analyze trials where the
same choice stimulus was shown successively. We note
that implementing this rather restrictive measure of PES
was afforded by our large sample size (N = 119). Overall,
an average of 21.45 robust PES trials were analyzed per
subject, with a total of 2552 trials in the analysis. (We note

that our main findings were replicated using traditional
PES metrics.)

We performed additional control analyses on the PES
data. In our “reinforcement history” analysis, we
separately visualized PES effects for each load based
on the number of times the stimulus associated with the
error response had previously been correctly responded
to (i.e., rewarded). The goal of this analysis was to
confirm that an effect of load on PES was not
confounded by the number of rewards accrued to the
stimulus leading up to the error trial preceding PES. If
so, the effect could reflect mainly the distribution of
“surprising” trials sampled across loads, with more
surprising trials (i.e., errors for well-learned stimuli)
being over-represented in the lower loads. (We note that
this over-representation is related to better learning in
the lower load conditions, which is itself taken as
evidence of a role for working memory in this task; see
Results.) We thus visualized PES as a function of the
cumulative reinforcement history for the current stimulus
at the moment of the error, focusing on 0, 1, 2, 3, 4,
and >4 cumulative rewards (>80% of valid robust PES
trials occurred with 4 or fewer cumulative rewards for
the stimulus on that error trial).

To quantitatively control for effects of reinforcement
history and additional factors potentially influencing
PES, we performed a multiple linear regression
analysis. For each subject, we designated three
predictor variables: the current Load condition for each
PES trial, the current Delay number for each PES trial
(i.e., the number of intervening trials between the error
trial and the last time the same stimulus was observed),
and the current cumulative reinforcement history for the
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presented stimulus (see above). Each individual variable
was z-scored before being entered into a linear
regression. All interaction terms were included as well,
and the regression was carried out using the gimfit
function in  MATLAB (version 2020a; Natick,
Massachusetts). Because of occasional low trial
numbers due to our restrictive PES operationalization,
we excluded subjects from the regression analysis if
they had fewer than 10 valid PES trials or did not have
robust PES trials in more than one load condition (nine
subjects total). The regression analysis allowed us to
simultaneously control for multiple variables that could
shape response times in this task.

Averages are depicted using the mean, and error bars
are computed using the standard error of the mean, with
the exception of the regression results which are
presented using box plots (median marked plus non-
outlier range). T-tests are wused for pairwise
comparisons; ANOVAs are used to measure the effects
of Load, as a repeated measure, on learning and PES.
All reported statistical tests (ANOVAs and t-tests) are
two-tailed, with alpha set at 0.05. Analyses and
statistics were performed using MATLAB (version
2020a; Natick, Massachusetts) and R (R Core Team).

Computational modeling analysis

We performed a computational modeling analysis to
further test the idea that PES is shaped by multiple
interacting learning processes. Collins and Frank (2012)
formalized how working memory (WM) and reinforcement
learning (RL) work in parallel during instrumental learning
(the “RL + WM” model). In the RL + WM model, two dis-
sociable modules learn stimulus—response associations
(i.e., state-action values). Learning is modeled using stan-
dard RL equations, where the action (a) value in a given
state (s) — Q(s,a) — is updated on each trial, t, using the
delta rule:

Qii1(8,@) = Qi(s, a) + ody (1)

o =r— Qs,a) (2)

where o is the learning rate, J is the reward prediction
error, and r is the reward received (1 or 0).

Values are transformed into probabilities via the
softmax function,

eQ(s.a)ﬂ
Pals) = s oama (3)

where [ constitutes the inverse temperature parameter,
and the sum in the denominator is taken over the three
possible actions, a. The RL module of the RL + WM
model is defined in Egs. (1) and (2). The WM module
simultaneously learns stimulus—response associations
(V), but with a fixed learning rate of 1, capturing
immediate commitment to memory rather than proper
incremental learning:

Wiii(s,a) = Wi(s,a) + (r— Wi(s,a)) = 4)

Working memory, being vulnerable to short-term
forgetting, undergoes trial-by-trial decay of W,

Wi(sj, ai) = Wi(sj, &) + o(Wo — Wi(s), a)) (5)

where ¢ draws W (over all stimuli j and actions /) toward
their initial values (W) of %4.

RL and WM choice policies (7tr. /Twu) are separately
computed using a softmax function with a fixed  of 100
(Eq. (3); see Collins and Frank, 2018 and McDougle
et al., 2021) and are then combined into a final policy as
a weighted sum,

= Welght * TTwm + (1 — Welght) * TR (6)

where the “weight” is a proxy for the degree to which WM
is currently recruited. This variable is determined by two
free parameters, the working memory capacity (i.e.,
resource limit) K, and the initial WM weighting p ,

. . K
weight = p « mm(1,m) (7)
This equation simply determines that WM recruitment
for a block of trials (b) is reduced as the load exceeds K.
An additional parameter (€) models undirected noise in
the final policy, which reflects “slips” of action,

T =(1-¢€) =7+ €x* Unif (7)

where “Unif” represents the uniform action policy (p = %
for each action).

Finally, the model also captures the neglect of
negative feedback often observed in this task by
reducing the learning rate (multiplicatively) on error trials:

o =7ya (8)

where 7y controls the degree of perseveration.
(Perseveration occurs for both modules; for WM the
fixed learning rate following negative feedback trials is
simply 7).

For completeness, we compared the fit of the
RL + WM model to two RL-only alternative models
tested in previous studies (Collins and Frank, 2012;
Collins and Frank, 2018) — the “Multi-o” model, where a
separate RL learning rate (Eq. (1)) is fit to each load con-
dition, and the “Basic RL” model, where only a single
learning rate is used across all load conditions. Both alter-
native models also include the noise and perseveration
parameters. We note that the Basic RL model cannot cap-
ture any effects of load, and thus serves as a baseline.
According to previous work, the Multi-oc model can cap-
ture load effects, but does not fit the data as well as the
RL + WM model, both quantitatively and qualitatively
(Collins and Frank, 2012; Collins and Frank, 2018; see
Results and Supplemental Fig. 1 for replication of these
computational modeling results).

Models were fit to choice data using maximum
likelihood estimation, minimizing the negative log
likelihood using the MATLAB function fmincon. Initial
parameter values were randomized for each fitting
iteration, with 50 iterations per fitting run to avoid local
minima. Parameter constraints were: o = [0,1];
7 =015 ¢ = 015 p = [01]; € = [0,1]; K = [2,6].
Models were compared using the Akaike Information
Criterion (Akaike, 1974). We used simulations to validate
the model and try to measure the relationship between
modeled choice behavior and PES: We simulated each
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model using the best fit parameters from the fitting proce-
dure over each subject's actual observed stimulus
sequences, simulating each subject 100 times and aver-
aging the results.

RESULTS

Learning of arbitrary visuomotor associations under
varying cognitive load

We analyzed data from an instrumental learning task
(Fig. 1) that requires human subjects to learn an
arbitrary visuomotor mapping between visual stimuli
(e.g., shapes, color patches, etc.) and discrete actions
(e.g., button presses) under various cognitive loads
(Collins and Frank, 2012; Collins and Frank, 2018). One
of the more straightforward pieces of evidence that work-
ing memory-based strategies may influence behavior in
this task are the learning curves it produces (Fig. 2A).
Critically, when performance (e.g., percent correct) is
plotted as a function of the number of iterations a choice
stimulus has been observed, people’s learning curves
show striking load effects, with more incremental learning
seen as the load increases (repeated measures ANOVA
capturing the effect of load on percent correct: F
(1,118) = 207.20, p < 0.001). In theory, if learning were
fully driven by a high-capacity reinforcement learning sys-
tem this effect should not occur, implicating the recruit-

ment of a short term memory-based strategy (Collins
and Frank, 2012).

PES during instrumental learning is modulated by
cognitive load

Is PES during learning affected by cognitive load? Fig. 2B
depicts average response times in the PES trial
sequences we analyzed in each load condition. PES,
defined as RTs on trial C + 1 minus RTs on trial C-1
(i.e., the correct trials flanking the error trial), was
significant in all load conditions (all Bonferroni-corrected
p’s < 0.05; Fig. 2C). This was observed using both the
robust method of quantifying PES and the typical
(confounded) method, where average post-correct RTs
are subtracted from average post-error RTs (all
Bonferroni-corrected p’s < 0.005). We note here that
the overall magnitude of PES was not significantly
different between the two data sets analyzed (t
(117) = 0.66, p = 0.51)

As shown in Fig. 2C, PES was attenuated as a
function of load: As load increased, the magnitude of
PES significantly decreased. We quantified this effect by
performing a one-way repeated measures ANOVA on
the average PES effect over each load condition. We
found a significant effect of load on the magnitude of
PES (F(1,118) = 6.77, p = 0.010). In support of our
hypothesis, these results suggest that PES during
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Fig. 2. PES results. (A) Learning curves (means), plotted as a function of stimulus iteration, separated by load. (B) Post-error slowing (PES) of
response times (RTs) was computed using the “robust” method of Dutilh et al. (2012b). This method controls for global confounds on PES by
targeting strings of trials where errors are flanked by a subsequent correct trial and a preceding correct trial (that is itself a post-correct trial). (C)
Average PES as a function of Load. (D) PES as a function of load given different reinforcement histories (number of cumulative rewards earned for
the presented stimulus at time of error). (Note that in the 0 rewards case, no valid trials were extracted in the Load = 2 condition.) (E) Box plot of
beta coefficients from a multiple regression analysis on post-error slowing (PES) that accounted for the effects of Load, Delay (the number of
intervening trials between the analyzed error trial and the last trial that presented the same choice stimulus), and reinforcement history (same as D),
as well as their interactions. Distributions outlined in blue connote significance at p < 0.05. Error bars in panels C-D = 1 s.e.m.
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learning may be shaped by processes sensitive to
cognitive load, such as working memory.

REINFORCEMENT HISTORY DOES NOT
EXPLAIN THE ROLE OF LOAD ON RESPONSE
SLOWING

There are alternatives to our interpretation of these PES
effects. First and most importantly, differences in reward
history could determine how load interacts with PES.
That is, in higher load conditions, where learning is
slower (Fig. 2A), prediction errors from the sampled
PES trials should be smaller on average (i.e., errors
should be less surprising), logically leading to
attenuated PES. One straightforward way to test this
interpretation is to visualize PES while holding
reinforcement history constant. Fig. 2D depicts PES
effects as a function of both load (abscissas) and the
number of cumulative rewards earned for the stimulus
seen on the analyzed error trials (panels from left to
right). As predicted, reinforcement history did not appear
to fully explain the observed effects: Higher load
conditions tended to show reduced PES in spite of
reinforcement history. Statistically quantifying the effects
plotted in Fig. 2D was not optimal given the
30 + factors for each mean PES value (moreover, our
restrictive PES criteria led to abundant missing values
across the sample). We thus opted for a multiple
regression approach that used the full set of PES trials
(further details of this analysis are given in the
Experimental Procedures section.)

The results of the regression analysis (Fig. 2E)
confirmed our observation that Load attenuates PES,
while simultaneously accounting for other variables of
interest (effect of Load: #109) = 2.44, p = 0.016).
Delay did not have a significant effect on PES (¢t
(109) = 0.16, p = 0.87). Reinforcement history (#
Rewards) had a numeric but nonsignificant on PES (¢
(109) = 1.59, p = 0.11). Lastly, reinforcement history
displayed a robust negative interaction with Load (t
(109) = 3.10, p = 0.003); in combination with Fig. 2D,
this interaction appears to suggest that in lower load
conditions, PES effects were more sensitive to
reinforcement history. None of the other two-way
interactions were significant (all p’'s > 0.05). Together,
these results are inconsistent with a simple account of
PES effects during instrumental learning. Instead, they
suggest that PES during instrumental learning may be
contingent on the particular cognitive processes
currently contributing to behavior (Tam et al., 2013).

We note that in some cases, PES has been
interpreted as reflecting a generic re-orienting of
attention after unexpected events rather than an error-
based adjustment per se (Notebaert et al., 2009). To test
this in the context of our task, we re-ran our analysis but
flipped the trials of interest to post-correct trials (i.e., ones
flanked by error trials, again using the robust method). We
did not see significant post-correct slowing in 4 out of the
5 load conditions (Bonferroni-corrected p < 0.05 for
load = 5; all p’s > 0.05 for all other conditions; Supple-
mental Fig. 2). Thus, in this context, PES effects

appeared to be restricted to errors rather than to an
unsigned “surprise” signal.

Working memory contributions to learning shape
PES effects

According to previous studies, a computational model that
involves a mixture of working memory maintenance and
reinforcement learning (the “RL + WM” model) best
explains human data in this task (both choices and
response times; Collins and Frank, 2012; Collins et al.,
2014; Collins et al., 2017; Collins, 2018; Collins and
Frank, 2018; Master et al., 2020; McDougle and Collins,
2021). Moreover, independent measures of working
memory capacity correlate with the relevant parameters
of the working memory component of the model (Collins
et al.,, 2014), and physiological measures (EEG, fMRI,
genetic correlates of executive control and reinforcement
learning neural circuits) further corroborate the hybrid
model framework (Collins and Frank, 2012; Collins
et al., 2017; Collins and Frank, 2018). We asked how this
computational framework may relate to PES.

We fit three computational models to subjects’ choice
behavior in the task. The RL + WM model (see
Experimental Procedures for model details), posits that
a fast-learning, fast-forgetting working memory module
and a slower procedural reinforcement learning system
operate in parallel and both contribute to choice
(Fig. 3A). Replicating previous work, we compared the
RL + WM model to two RL-only models, both of which
it outperformed (Fig. 3B; t-tests comparing RL + WM
vs Multi-0AIC values: #(118) = 6.04, p < 0.001;
RL + WM vs Basic RL: #118) = 16.67, p < 0.001;
Multi-avs Basic RL: #(118) = 15.40, p < 0.001). As
shown in Supplemental Fig. 1, simulations of both the
RL + WM and Multi-oc model captured load effects on
learning, although the former model provided a better
quantitative and qualitative fit to the data; the Basic RL
model cannot capture any load effects on learning.
Given that the RL + WM model better captures choice
behavior in the task, it follows that it may also better
explain other behavioral effects, such as PES.

PES is often thought to reflect the recruitment of
cognitive control during performance monitoring
(Botvinick et al., 2001). What determines the size of the
PES effect? While our models do not explicitly simulate
response times, we posited that one possible correlate
of PES would be the subject’s deviation from their choice
policy on error trials (“policy deviance”). That is, when a
subject has a “confident” choice policy and errors are thus
unlikely, they should show robust PES to get back on
track; in contrast, when the policy is less definitive, there
could be relatively less PES, perhaps reflecting a weaker
policy error (Bennett et al., 2021). If true, the choice policy
derived from fitting the superior RL + WM model should
better match the pattern of observed PES load effects
then the choice policy derived from the next best model,
the RL-only Multi-oc model.

To perform this analysis, we simulated each model
using its best-fit parameters (see Experimental
Procedures for simulation details). We then performed
the robust PES analysis on the simulated data to
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perceptual decisions (Purcell and
Kiani, 2016), to recognition memory
(Rae et al.,, 2014) and learning
(Cavanagh et al., 2010; Verstynen
et al.,, 2012). The most common
account of PES argues that it rep-
resents the cost of exerting cogni-
tive control to restore successful
performance after errors (Botvinick
et al., 2001; Gehring and Fencsik,
2001; Danielmeier and Ullsperger,
2011; Dutilh et al., 2012a; but see
Notebaert et al., 2009). Neural cor-
relates of PES appear to accord
with the recruitment of control, such
as increases in the event-related
negativity (ERN) both in scalp
EEG (Debener et al.,, 2005) and
intracranially (Fu et al., 2019), and
increased BOLD activity in medial
prefrontal cortex (Gehring and
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Fig. 3. Modeling results. (A) Schematic of RL + WM model (Collins and Frank, 2012). A working

0 Fencsik, 2001; Narayanan and

Laubach, 2008), both of which are
Load . "

linked to cognitive control

processes.

Computationally, studies of

memory-based (WM) module stores stimulus—response associations in a short term store, but is PES during instrumental learning
susceptible to temporal decay. A reinforcement learning (RL) module performs trial-by-trial learning  have related the magnitude of

from reward prediction errors (PEs), incrementally updating the value (Q) of individual stimulus— PES
response associations. Both modules are differentially weighted, based on load, to produce a
combined action selection policy (7). (B) Comparison of the RL + WM model and both a load-

effects to the reward
prediction error experienced by

sensitive RL model variant with different learning rates for each load condition (Multi-0)) and a baseline ~ the learner when an error is
standard RL model with no load-sensitive parameters (Basic RL). (C) Model simulation results. For committed, as well as to frontal
error trials in the simulated agents, we computed the degree to which that error deviated from the  theta oscillations (Cavanagh et al.

current correct choice policy (“policy deviance”; purple functions/ordinate), operationalized as one
minus the inferred probability of error on that trial. While both the RL + WM and Multi-oc models

2010). That is, on trials where the

demonstrate an effect of Load on policy deviance, the RL + WM model better captures the observed  l€@rner expected a reward but did

post-error slowing function (green function/ordinate). Error bars = 95% C.1.

specify trials that satisfied the criteria used to compute
PES on the actual subject data (Fig. 2B). Using Eq. (3),
we then quantified policy deviance on the error trials
preceding the specified PES trials as 1-p(error) (we note
that for the RL + WM model we used the weighted
hybrid policy in Eqg. (6)). Both models showed a
negative effect of load on policy deviance (Fig. 3C),
which was expected given that both models showed a
negative effect of load on learning (Supplemental
Fig. 1). Critically, however, the shape of the RL + WM
model’s policy deviance function provided a better
match to the observed PES function (Fig. 3C). This
strong qualitative correspondence, in addition to the
model fitting results (Fig. 3B), further suggests that PES
during learning is shaped by an action selection policy
that reflects the operation of multiple learning
processes, rather than a single reinforcement learning
system.

DISCUSSION

The phenomenon of post-error slowing (PES; Rabbitt,
1966) — an increase of choice response times after errors
—is seen throughout human decision-making, from simple

not receive one, the PES effect
(and frontal theta power) is larger
than on trials where reward expec-
tations were less certain
(Cavanagh et al., 2010). Our results here show that a
key factor influencing PES during instrumental learning
is cognitive load (Fig. 2), which, to our knowledge, has
not been manipulated in previous assays of PES during
reward-based learning. These results appear to compli-
cate a straightforward prediction error story, instead sug-
gesting that PES may be primarily observed in contexts
where top-down executive function guides decision-
making (i.e., lower cognitive load), and would thus be
especially efficacious in restoring performance after
errors. Thus, executive function may mediate the relation-
ship between prediction errors and PES. Indeed, accord-
ing to our computational modeling analysis, deviation
from a combined choice policy that reflects both reinforce-
ment learning and working memory processes provided a
compelling account of PES effects during learning
(Fig. 3). These effects could not be captured by a model
implementing reinforcement learning alone.

Similar results to those reported here have been
observed in the domain of category learning: Tam et al.
(2013) found that PES was most reliable early on in a cat-
egory learning task, even though errors were made
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throughout. Crucially, PES was only reliably related to
performance in a condition that required memory-based
rule-following rather than incremental feature integration;
that is, PES seemed to be related to a particular type of
learning strategy, one which is closer to the kind of
goal-directed behavior implied in standard studies of
PES (Ashby and Maddox, 2005; Tam et al., 2013). While
these findings are specific to category learning, they sug-
gest that the relationship between PES and learning is not
straightforward — PES may only appear when decision-
making requires some form of explicit deliberation, mem-
ory retrieval, or online memory maintenance, such as in
typical decision-making tasks, simple learning contexts
(i.e., low cognitive load; explicit rule learning), and/or dur-
ing the earliest phases of training.

Our study was inspired by discoveries showing that
learning rarely reflects the workings of a single,
monolithic learning system (Rmus et al., 2021). Indeed,
multiple qualitatively distinct learning processes act in
parallel (or opposition) across a variety of learning tasks
in addition to category learning (Ashby and Maddox,
2005) and instrumental learning tasks (Collins and
Frank, 2012), including sequential reinforcement learning
tasks (Otto et al., 2015) and various motor learning tasks
(Krakauer et al., 2019; McDougle and Taylor, 2019). In
this study we examined PES in an instrumental learning
task where people needed to learn to associate different
stimuli with discrete actions. As mentioned earlier, even
this relatively simple task has been shown to recruit (at
least) two distinct learning strategies — top-down, working
memory-based behavior that stores stimulus—response
associations in short term memory, and incremental pro-
cedural reinforcement learning (Collins and Frank, 2012;
Collins et al., 2014; Collins et al., 2017; Collins and
Frank, 2018; Collins, 2018; Master et al., 2020;
McDougle and Collins, 2021). The former strategy has
been linked to executive processes in the prefrontal cor-
tex, and the latter to the cortico-striatal dopamine system
(Collins et al., 2017). More broadly, this study fits into a
larger revision of many assumptions about instrumental
learning — instead of reflecting isolated procedural learn-
ing systems, instrumental behavior often reflects complex
interactions between executive functions (e.g., attention,
working memory, rule learning) and lower-level learning
circuits (Radulescu et al., 2019; McDougle et al., 2021;
Rmus et al., 2021). This has implications for fields such
as computational psychiatry, where researchers often
attempt to computationally quantify behavioral effects for
diagnostic purposes; our results suggest that PES, like
action selection, is complex and cannot be easily linked
to a single learning circuit.

One important caveat to any account of PES is that
PES itself can, in practice, have multiple purposes
(Purcell and Kiani, 2016). For example, it has been
demonstrated that in certain conditions slowing can be
seen when any rare event occurs, regardless of it being
an error trial or a successful trial (Notebaert et al.,
2009). We did not find robust evidence for that effect in
these data, though this alternative “orienting” account of
PES does not necessarily preclude a cognitive control
account (Danielmeier and Ullsperger, 2011; Dutilh et al.,

2012a). Future experiments could use probabilistic
reward feedback to tightly control the frequency of error
and correct trials to test alternative models of PES during
learning.

Overall, our data suggest that in instrumental learning
settings, PES may reflect a kind of normative accounting
where the efficacy of cognitive control determines the
utility of slowing after errors. Going forward, behavioral
and neural techniques (such as EEG and fMRI) can be
used to further elucidate how classic psychological
effects like PES interact with a more holistic, muilti-
system understanding of human learning.
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