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Abstract—Post-error slowing (PES) – a relative increase in response time for a decision on trial t given an error on
trial t � 1 – is a well-known effect in studies of human decision-making. Post-error processing is reflected in neu-
ral signatures such as reduced activity in sensorimotor regions and increased activity in medial prefrontal cortex.
PES is thought to reflect the deployment of executive resources to get task performance back on track. This pro-
vides a general account of PES that cuts across perceptual decision-making, memory, and learning tasks. With
respect to PES and learning, things are complicated by the fact that learning often reflects multiple qualitatively
different processes with distinct neural correlates. It is unclear if multiple processes shape PES during learning,
or if PES reflects a policy for reacting to errors generated by one particular process (e.g., cortico-striatal reinforce-
ment learning). Here we provide behavioral and computational evidence that PES is influenced by the operation of
multiple distinct processes. Human subjects learned a simple visuomotor skill (arbitrary visuomotor association
learning) under low load conditions more amenable to simple working memory-based strategies, and high load
conditions that were putatively more reliant on trial-by-trial reinforcement learning. PES decreased with load,
even when the progress of learning (i.e., reinforcement history) was accounted for. This result suggested that
PES during learning is influenced by the recruitment of working memory. Indeed, observed PES effects were
approximated by a computational model with parallel working memory and reinforcement learning systems that
are differentially recruited according to cognitive load.
This article is part of a Special Issue entitled: SI: Error Processing.� 2021 IBRO. Published by Elsevier Ltd. All rights reserved.
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INTRODUCTION

Why do people typically slow down after making errors?

This intuitive behavior resonates in folk psychology, for

example, when a coach instructs a pupil to ‘‘slow down

and focus” after they err. The large body of research on

post-error slowing (PES; Rabbitt, 1966) typically uses lab-

oratory tasks requiring rapid decision-making, such as

perceptual judgment (e.g., dot-motion discrimination;

Purcell and Kiani, 2016) and response conflict tasks

(e.g., the Stroop task; Botvinick et al., 2001), where each

trial involves an independent choice. In such tasks, PES

is often thought of as a compensatory mechanism to

improve future goal-directed behavior by recruiting cogni-

tive control (Dutilh et al., 2012a). This cognitive control

account has been linked to activities in the medial pre-

frontal cortex (Botvinick et al., 2001; Gehring and

Fencsik, 2001; Kerns, 2004; Narayanan and Laubach,

2008; Cavanagh et al., 2010; Danielmeier et al., 2011),

a key correlate of executive functioning.
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What about PES during learning? It is reasonable to

assume that PES would also be present in learning

tasks, where performance should be monitored on an

ongoing basis. Indeed, one influential study using a

standard reinforcement learning task showed that PES

does indeed occur during instrumental learning, is

linearly related to a computationally derived reward

prediction error, and covaries with frontal theta power

(Cavanagh et al., 2010). In addition to demonstrating

PES during instrumental learning, these findings linked

PES to a theoretical construct of error derived from inter-

nally represented stimulus or action values (Schultz et al.,

1997).

Work over the past several years has shown that in

many human instrumental learning tasks, multiple

processes contribute to the learning curve. For example,

a body of research by Collins and colleagues shows

that during the learning of simple visuomotor skills (i.e.,

the learning of arbitrary visuomotor associations), both

working memory strategies and incremental

reinforcement learning simultaneously contribute to

peoples’ choices (Collins and Frank, 2012; Collins et al.,

2014; Collins et al., 2017; Collins and Frank, 2018;

Collins, 2018; Master et al., 2020; McDougle and
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Collins, 2021). Similarly, simple sequential instrumental

learning tasks have revealed (at least) two dissociable

learning systems – ‘‘model-based” and ‘‘model-free” rein-

forcement learning – with the former involving the repre-

sentation of state transitions and the latter involving the

caching of a running average of action outcomes (Daw

et al., 2011; Doll et al., 2012; Otto et al., 2015). The

model-based process has been linked to cognitive control

and working memory systems (Otto et al., 2015), while

the model-free process has been linked to canonical

cortico-striatal learning systems (Gläscher et al., 2010).

These findings highlight a lacuna in accounts of PES

during instrumental learning – is the relationship

between PES and learning mediated by one particular

learning system? Here we propose that cognitive

decision-making processes, which operate alongside

reinforcement learning processes, shape PES effects.

Consequently, PES during learning should be affected

by cognitive load in a manner predicted by a multi-

system account of learning. This view would accord with

neurophysiological findings in both humans and model

organisms that link PES with processing in the

prefrontal cortex (Gehring and Fencsik, 2001;

Narayanan and Laubach, 2008). Moreover, this prediction

follows from results in the category learning literature

demonstrating that PES is more closely related to adop-

tion of ‘‘rule-based” learning strategies linked to prefrontal

function than incremental ‘‘information integration” learn-

ing strategies linked to striatal function (Ashby and

Maddox, 2005; Tam et al., 2013). If confirmed, this result

would complicate the assumption that PES during learn-

ing is diagnostic of error monitoring within one particular

learning system.

We analyzed a large data set (total N= 119) from two

previously-published studies (Collins and Frank, 2012;

Collins and Frank, 2018), where human subjects learned

arbitrary visuomotor mappings under varying cognitive

loads. Load was operationalized as the ‘‘set size” (i.e.,

the number of unique visuomotor associations to be

learned) in a given task block. Nearly a decade of

research using this method (Collins and Frank, 2012;

McDougle and Collins, 2021) has confirmed that both

working memory strategies (i.e., active memory traces

of correct stimulus–response associations) and conven-

tional reinforcement learning processes (i.e., trial-by-trial

integration of stimulus–response values) can operate in

parallel. Such data provide a natural testbed for charac-

terizing how PES might relate to different learning

strategies.
EXPERIMENTAL PROCEDURES

Arbitrary visuomotor association learning task

Detailed methods for the behavioral task can be found in

the source studies (Collins and Frank, 2012; Collins and

Frank, 2018), though we offer a summary here. The pro-

tocol for all behavioral tasks was approved by the institu-

tional review board at Brown University and all subjects

gave informed consent. A combined sample size of

N = 119 was included in our analysis, and consisted of

neurologically healthy, right-handed, young-adult partici-
pants with normal or corrected-to-normal vision. The

design of the task is depicted in Fig. 1. Subjects were

seated in front of a computer monitor where they

responded to stimuli using a USB computer keyboard.

Subjects were tasked with learning which of three

responses (one of three button presses, using the ‘‘J,”

‘‘K,” or ‘‘L” keys) was associated with each presented

image in order to maximize reward feedback. Key

presses (e.g. J, K, or L) were produced with the index,

middle, or ring finger, respectively. On correct trials, pos-

itive feedback (‘‘+1” points) was displayed centrally in

green font, and on incorrect trials, negative feedback

(‘‘0” points) was displayed centrally in red font. Subjects

had to respond within 1.4 seconds to receive feedback.

We excluded trials where responses were too slow or

exceedingly rapid (<200 ms).

Each experiment consisted of several distinct blocks

of trials. Unique sets of arbitrary, discriminable visual

images were used in each block (e.g., shape line-

drawings, colored blobs, vegetables, vehicles, scenes,

etc.). Each block was associated with a particular load

(or ‘‘set size”), defined as the number of individual

stimulus–response associations the subject was

required to learn during that block. Block ordering was

designed to approximate an even distribution of high

and low load blocks across the two halves of the

experiment, and to avoid repeated blocks of the same

load (>2 in a row). Each experiment was completed in

a single session without breaks.

On each trial, one image was displayed on screen at a

time over a black background (stimulus visual angle,

�8�). Each stimulus was presented for a minimum of 9

iterations over the block, with a maximum of 15

iterations. Blocks were complete after either 15

iterations of each stimulus were seen, or when subjects

selected the correct action for three of the four last

iterations for all stimuli. The specific sequence of stimuli

within a block was pseudorandomized. In the first data

set (from Collins and Frank, 2012) 18 blocks were com-

pleted (loads 1–6; load = 1 was not analyzed here as it

was not implemented in both data sets; average number

of trials = 670; experiment time: �45 minutes), and in

the second data set (from Collins and Frank, 2018) 22

blocks were completed (loads 2–6; average number of tri-

als = 750; experiment time: �50 minutes). Across all

subjects, the mean number of stimulus iterations experi-

enced for loads 2–6 was, respectively, 9.7, 9.9, 10.1,

11.0, and 11.7, and the mode was 9 iterations across all

loads. Thus, while subjects completed n*iterations more

trials per block as load increased by n, the number of iter-

ations performed per stimulus were comparable across

loads.

Behavioral analysis

Learning curves were computed by taking the mean

percent correct (i.e., percent trials where subjects

performed the correct action in response to a stimulus)

relative to the stimulus iteration. This allows us to

analyze learning with respect to each stimulus, rather

than with respect to the raw number of trials (which is

linearly confounded with load). Reaction time (RT) was



Fig. 1. Task. In this arbitrary visuomotor association learning task, subjects learn stimulus–response associations over independent trial blocks.

Example block designs are shown on the left, demonstrating how the cognitive load manipulation is implemented. Within each block, stimuli were

presented in a pseudorandomized sequence (right), and each stimulus was seen 9–15 times within a block.
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computed as the amount of time (in seconds) between the

appearance of the stimulus and the moment of the key

press.

A key recent study revealed that conventional

operationalizations of PES – simply analyzing response

times on all trials that follow errors versus correct

responses – are susceptible to significant temporal

confounds (Dutilh et al., 2012b). As demonstrated by

Dutilh et al. (2012b), PES can be masked (or erroneously

amplified) by global changes in accuracy, speed, atten-

tional vigilance, and meta-learning across an experiment.

To address this issue those authors developed a simple

solution: PES should be computed on pairwise compar-

isons of RTs within strings of trials, wherein the error of

interest is flanked by (at least) two correct trials preceding

it and another correct trial succeeding it. PES is then

quantified as the difference between RTs on the trial after

the error versus the trial just before the error.

This so-called ‘‘robust” method (Dutilh et al., 2012b)

can mostly account for the aforementioned global con-

founds and was thus used throughout our analyses. Crit-

ically, these global confounds are especially present in

learning tasks, where accuracy and speed are not evenly

distributed over trials. Moreover, to control for the well-

known effect of trial repetition on RT (Hale, 1969), effects

which are avoided in typical decision-making tasks with

independent trials, we did not analyze trials where the

same choice stimulus was shown successively. We note

that implementing this rather restrictive measure of PES

was afforded by our large sample size (N= 119). Overall,

an average of 21.45 robust PES trials were analyzed per

subject, with a total of 2552 trials in the analysis. (We note
that our main findings were replicated using traditional

PES metrics.)

We performed additional control analyses on the PES

data. In our ‘‘reinforcement history” analysis, we

separately visualized PES effects for each load based

on the number of times the stimulus associated with the

error response had previously been correctly responded

to (i.e., rewarded). The goal of this analysis was to

confirm that an effect of load on PES was not

confounded by the number of rewards accrued to the

stimulus leading up to the error trial preceding PES. If

so, the effect could reflect mainly the distribution of

‘‘surprising” trials sampled across loads, with more

surprising trials (i.e., errors for well-learned stimuli)

being over-represented in the lower loads. (We note that

this over-representation is related to better learning in

the lower load conditions, which is itself taken as

evidence of a role for working memory in this task; see

Results.) We thus visualized PES as a function of the

cumulative reinforcement history for the current stimulus

at the moment of the error, focusing on 0, 1, 2, 3, 4,

and >4 cumulative rewards (>80% of valid robust PES

trials occurred with 4 or fewer cumulative rewards for

the stimulus on that error trial).

To quantitatively control for effects of reinforcement

history and additional factors potentially influencing

PES, we performed a multiple linear regression

analysis. For each subject, we designated three

predictor variables: the current Load condition for each

PES trial, the current Delay number for each PES trial

(i.e., the number of intervening trials between the error

trial and the last time the same stimulus was observed),

and the current cumulative reinforcement history for the
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presented stimulus (see above). Each individual variable

was z-scored before being entered into a linear

regression. All interaction terms were included as well,

and the regression was carried out using the glmfit
function in MATLAB (version 2020a; Natick,

Massachusetts). Because of occasional low trial

numbers due to our restrictive PES operationalization,

we excluded subjects from the regression analysis if

they had fewer than 10 valid PES trials or did not have

robust PES trials in more than one load condition (nine

subjects total). The regression analysis allowed us to

simultaneously control for multiple variables that could

shape response times in this task.

Averages are depicted using the mean, and error bars

are computed using the standard error of the mean, with

the exception of the regression results which are

presented using box plots (median marked plus non-

outlier range). T-tests are used for pairwise

comparisons; ANOVAs are used to measure the effects

of Load, as a repeated measure, on learning and PES.

All reported statistical tests (ANOVAs and t-tests) are

two-tailed, with alpha set at 0.05. Analyses and

statistics were performed using MATLAB (version

2020a; Natick, Massachusetts) and R (R Core Team).

Computational modeling analysis

We performed a computational modeling analysis to

further test the idea that PES is shaped by multiple

interacting learning processes. Collins and Frank (2012)

formalized how working memory (WM) and reinforcement

learning (RL) work in parallel during instrumental learning

(the ‘‘RL +WM” model). In the RL +WMmodel, two dis-

sociable modules learn stimulus–response associations

(i.e., state-action values). Learning is modeled using stan-

dard RL equations, where the action (a) value in a given

state (s) – Q(s,a) – is updated on each trial, t, using the

delta rule:

Qtþ1ðs;aÞ ¼ Qtðs;aÞ þ adt ð1Þ

dt ¼ r�Qtðs; aÞ ð2Þ
where a is the learning rate, d is the reward prediction

error, and r is the reward received (1 or 0).

Values are transformed into probabilities via the

softmax function,

pðajsÞ ¼ eQðs;aÞb

RieQðs;aiÞb ð3Þ

where b constitutes the inverse temperature parameter,

and the sum in the denominator is taken over the three

possible actions, ai. The RL module of the RL + WM

model is defined in Eqs. (1) and (2). The WM module

simultaneously learns stimulus–response associations

(V), but with a fixed learning rate of 1, capturing

immediate commitment to memory rather than proper

incremental learning:

Wtþ1ðs; aÞ ¼ Wtðs;aÞ þ ðr�Wtðs;aÞÞ ¼ r ð4Þ
Working memory, being vulnerable to short-term

forgetting, undergoes trial-by-trial decay of W,
Wt sj;ai

� � ¼ Wtðsj;aiÞ þ /ðW0 �Wtðsj; aiÞÞ ð5Þ
where / draws W (over all stimuli j and actions i) toward
their initial values (W0) of ⅓.

RL and WM choice policies (pRL=pWM) are separately

computed using a softmax function with a fixed b of 100

(Eq. (3); see Collins and Frank, 2018 and McDougle

et al., 2021) and are then combined into a final policy as

a weighted sum,

p ¼ weight � pWM þ ð1� weightÞ � pRL ð6Þ
where the ‘‘weight” is a proxy for the degree to which WM

is currently recruited. This variable is determined by two

free parameters, the working memory capacity (i.e.,

resource limit) K, and the initial WM weighting q ,

weight ¼ q �minð1; K

loadðbÞÞ ð7Þ

This equation simply determines that WM recruitment

for a block of trials (b) is reduced as the load exceeds K.
An additional parameter (�) models undirected noise in

the final policy, which reflects ‘‘slips” of action,

p ¼ ð1� �Þ � pþ � � Unif ð7Þ
where ‘‘Unif” represents the uniform action policy (p = ⅓
for each action).

Finally, the model also captures the neglect of

negative feedback often observed in this task by

reducing the learning rate (multiplicatively) on error trials:

a ¼ ca ð8Þ
where c controls the degree of perseveration.

(Perseveration occurs for both modules; for WM the

fixed learning rate following negative feedback trials is

simply c).
For completeness, we compared the fit of the

RL + WM model to two RL-only alternative models

tested in previous studies (Collins and Frank, 2012;

Collins and Frank, 2018) – the ‘‘Multi-a” model, where a

separate RL learning rate (Eq. (1)) is fit to each load con-

dition, and the ‘‘Basic RL” model, where only a single

learning rate is used across all load conditions. Both alter-

native models also include the noise and perseveration

parameters. We note that the Basic RL model cannot cap-

ture any effects of load, and thus serves as a baseline.

According to previous work, the Multi-a model can cap-

ture load effects, but does not fit the data as well as the

RL + WM model, both quantitatively and qualitatively

(Collins and Frank, 2012; Collins and Frank, 2018; see

Results and Supplemental Fig. 1 for replication of these

computational modeling results).

Models were fit to choice data using maximum

likelihood estimation, minimizing the negative log

likelihood using the MATLAB function fmincon. Initial

parameter values were randomized for each fitting

iteration, with 50 iterations per fitting run to avoid local

minima. Parameter constraints were: a = [0,1];

c = [0,1]; / = [0,1]; q = [0,1]; � = [0,1]; K = [2,6].

Models were compared using the Akaike Information

Criterion (Akaike, 1974). We used simulations to validate

the model and try to measure the relationship between

modeled choice behavior and PES: We simulated each



S. D. McDougle /Neuroscience 486 (2022) 37–45 41
model using the best fit parameters from the fitting proce-

dure over each subject’s actual observed stimulus

sequences, simulating each subject 100 times and aver-

aging the results.
RESULTS

Learning of arbitrary visuomotor associations under
varying cognitive load

We analyzed data from an instrumental learning task

(Fig. 1) that requires human subjects to learn an

arbitrary visuomotor mapping between visual stimuli

(e.g., shapes, color patches, etc.) and discrete actions

(e.g., button presses) under various cognitive loads

(Collins and Frank, 2012; Collins and Frank, 2018). One

of the more straightforward pieces of evidence that work-

ing memory-based strategies may influence behavior in

this task are the learning curves it produces (Fig. 2A).

Critically, when performance (e.g., percent correct) is

plotted as a function of the number of iterations a choice

stimulus has been observed, people’s learning curves

show striking load effects, with more incremental learning

seen as the load increases (repeated measures ANOVA

capturing the effect of load on percent correct: F
(1,118) = 207.20, p < 0.001). In theory, if learning were

fully driven by a high-capacity reinforcement learning sys-

tem this effect should not occur, implicating the recruit-
Fig. 2. PES results. (A) Learning curves (means), plotted as a function of s

response times (RTs) was computed using the ‘‘robust” method of Dutilh e

targeting strings of trials where errors are flanked by a subsequent correct t

Average PES as a function of Load. (D) PES as a function of load given differ

the presented stimulus at time of error). (Note that in the 0 rewards case, no

beta coefficients from a multiple regression analysis on post-error slowing

intervening trials between the analyzed error trial and the last trial that presen

as well as their interactions. Distributions outlined in blue connote significan
ment of a short term memory-based strategy (Collins

and Frank, 2012).
PES during instrumental learning is modulated by
cognitive load

Is PES during learning affected by cognitive load? Fig. 2B

depicts average response times in the PES trial

sequences we analyzed in each load condition. PES,

defined as RTs on trial C + 1 minus RTs on trial C-1

(i.e., the correct trials flanking the error trial), was

significant in all load conditions (all Bonferroni-corrected

p’s < 0.05; Fig. 2C). This was observed using both the

robust method of quantifying PES and the typical

(confounded) method, where average post-correct RTs

are subtracted from average post-error RTs (all

Bonferroni-corrected p’s < 0.005). We note here that

the overall magnitude of PES was not significantly

different between the two data sets analyzed (t

(117) = 0.66, p = 0.51)

As shown in Fig. 2C, PES was attenuated as a

function of load: As load increased, the magnitude of

PES significantly decreased. We quantified this effect by

performing a one-way repeated measures ANOVA on

the average PES effect over each load condition. We

found a significant effect of load on the magnitude of

PES (F(1,118) = 6.77, p = 0.010). In support of our

hypothesis, these results suggest that PES during
timulus iteration, separated by load. (B) Post-error slowing (PES) of

t al. (2012b). This method controls for global confounds on PES by

rial and a preceding correct trial (that is itself a post-correct trial). (C)
ent reinforcement histories (number of cumulative rewards earned for

valid trials were extracted in the Load = 2 condition.) (E) Box plot of

(PES) that accounted for the effects of Load, Delay (the number of

ted the same choice stimulus), and reinforcement history (same as D),

ce at p < 0.05. Error bars in panels C-D = 1 s.e.m.
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learning may be shaped by processes sensitive to

cognitive load, such as working memory.
REINFORCEMENT HISTORY DOES NOT
EXPLAIN THE ROLE OF LOAD ON RESPONSE

SLOWING

There are alternatives to our interpretation of these PES

effects. First and most importantly, differences in reward

history could determine how load interacts with PES.

That is, in higher load conditions, where learning is

slower (Fig. 2A), prediction errors from the sampled

PES trials should be smaller on average (i.e., errors

should be less surprising), logically leading to

attenuated PES. One straightforward way to test this

interpretation is to visualize PES while holding

reinforcement history constant. Fig. 2D depicts PES

effects as a function of both load (abscissas) and the

number of cumulative rewards earned for the stimulus

seen on the analyzed error trials (panels from left to

right). As predicted, reinforcement history did not appear

to fully explain the observed effects: Higher load

conditions tended to show reduced PES in spite of

reinforcement history. Statistically quantifying the effects

plotted in Fig. 2D was not optimal given the

30 + factors for each mean PES value (moreover, our

restrictive PES criteria led to abundant missing values

across the sample). We thus opted for a multiple

regression approach that used the full set of PES trials

(further details of this analysis are given in the

Experimental Procedures section.)

The results of the regression analysis (Fig. 2E)

confirmed our observation that Load attenuates PES,

while simultaneously accounting for other variables of

interest (effect of Load: t(109) = 2.44, p = 0.016).

Delay did not have a significant effect on PES (t

(109) = 0.16, p = 0.87). Reinforcement history (#

Rewards) had a numeric but nonsignificant on PES (t
(109) = 1.59, p = 0.11). Lastly, reinforcement history

displayed a robust negative interaction with Load (t
(109) = 3.10, p = 0.003); in combination with Fig. 2D,

this interaction appears to suggest that in lower load

conditions, PES effects were more sensitive to

reinforcement history. None of the other two-way

interactions were significant (all p’s > 0.05). Together,

these results are inconsistent with a simple account of

PES effects during instrumental learning. Instead, they

suggest that PES during instrumental learning may be

contingent on the particular cognitive processes

currently contributing to behavior (Tam et al., 2013).

We note that in some cases, PES has been

interpreted as reflecting a generic re-orienting of

attention after unexpected events rather than an error-

based adjustment per se (Notebaert et al., 2009). To test

this in the context of our task, we re-ran our analysis but

flipped the trials of interest to post-correct trials (i.e., ones

flanked by error trials, again using the robust method). We

did not see significant post-correct slowing in 4 out of the

5 load conditions (Bonferroni-corrected p < 0.05 for

load = 5; all p’s > 0.05 for all other conditions; Supple-

mental Fig. 2). Thus, in this context, PES effects
appeared to be restricted to errors rather than to an

unsigned ‘‘surprise” signal.

Working memory contributions to learning shape
PES effects

According to previous studies, a computational model that

involves a mixture of working memory maintenance and

reinforcement learning (the ‘‘RL + WM” model) best

explains human data in this task (both choices and

response times; Collins and Frank, 2012; Collins et al.,

2014; Collins et al., 2017; Collins, 2018; Collins and

Frank, 2018; Master et al., 2020; McDougle and Collins,

2021). Moreover, independent measures of working

memory capacity correlate with the relevant parameters

of the working memory component of the model (Collins

et al., 2014), and physiological measures (EEG, fMRI,

genetic correlates of executive control and reinforcement

learning neural circuits) further corroborate the hybrid

model framework (Collins and Frank, 2012; Collins

et al., 2017; Collins and Frank, 2018). We asked how this

computational framework may relate to PES.

We fit three computational models to subjects’ choice

behavior in the task. The RL + WM model (see

Experimental Procedures for model details), posits that

a fast-learning, fast-forgetting working memory module

and a slower procedural reinforcement learning system

operate in parallel and both contribute to choice

(Fig. 3A). Replicating previous work, we compared the

RL + WM model to two RL-only models, both of which

it outperformed (Fig. 3B; t-tests comparing RL + WM

vs Multi-aAIC values: t(118) = 6.04, p < 0.001;

RL + WM vs Basic RL: t(118) = 16.67, p < 0.001;

Multi-avs Basic RL: t(118) = 15.40, p < 0.001). As

shown in Supplemental Fig. 1, simulations of both the

RL + WM and Multi-a model captured load effects on

learning, although the former model provided a better

quantitative and qualitative fit to the data; the Basic RL

model cannot capture any load effects on learning.

Given that the RL + WM model better captures choice

behavior in the task, it follows that it may also better

explain other behavioral effects, such as PES.

PES is often thought to reflect the recruitment of

cognitive control during performance monitoring

(Botvinick et al., 2001). What determines the size of the

PES effect? While our models do not explicitly simulate

response times, we posited that one possible correlate

of PES would be the subject’s deviation from their choice

policy on error trials (‘‘policy deviance”). That is, when a

subject has a ‘‘confident” choice policy and errors are thus

unlikely, they should show robust PES to get back on

track; in contrast, when the policy is less definitive, there

could be relatively less PES, perhaps reflecting a weaker

policy error (Bennett et al., 2021). If true, the choice policy

derived from fitting the superior RL + WM model should

better match the pattern of observed PES load effects

then the choice policy derived from the next best model,

the RL-only Multi-a model.

To perform this analysis, we simulated each model

using its best-fit parameters (see Experimental

Procedures for simulation details). We then performed

the robust PES analysis on the simulated data to



Fig. 3. Modeling results. (A) Schematic of RL + WM model (Collins and Frank, 2012). A working

memory-based (WM) module stores stimulus–response associations in a short term store, but is

susceptible to temporal decay. A reinforcement learning (RL) module performs trial-by-trial learning

from reward prediction errors (PEs), incrementally updating the value (Q) of individual stimulus–

response associations. Both modules are differentially weighted, based on load, to produce a

combined action selection policy (p). (B) Comparison of the RL + WM model and both a load-

sensitive RL model variant with different learning rates for each load condition (Multi-a) and a baseline

standard RL model with no load-sensitive parameters (Basic RL). (C) Model simulation results. For

error trials in the simulated agents, we computed the degree to which that error deviated from the

current correct choice policy (‘‘policy deviance”; purple functions/ordinate), operationalized as one

minus the inferred probability of error on that trial. While both the RL + WM and Multi-a models

demonstrate an effect of Load on policy deviance, the RL + WM model better captures the observed

post-error slowing function (green function/ordinate). Error bars = 95% C.I.
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specify trials that satisfied the criteria used to compute

PES on the actual subject data (Fig. 2B). Using Eq. (3),

we then quantified policy deviance on the error trials

preceding the specified PES trials as 1-p(error) (we note

that for the RL + WM model we used the weighted

hybrid policy in Eq. (6)). Both models showed a

negative effect of load on policy deviance (Fig. 3C),

which was expected given that both models showed a

negative effect of load on learning (Supplemental

Fig. 1). Critically, however, the shape of the RL + WM

model’s policy deviance function provided a better

match to the observed PES function (Fig. 3C). This

strong qualitative correspondence, in addition to the

model fitting results (Fig. 3B), further suggests that PES

during learning is shaped by an action selection policy

that reflects the operation of multiple learning

processes, rather than a single reinforcement learning

system.
DISCUSSION

The phenomenon of post-error slowing (PES; Rabbitt,

1966) – an increase of choice response times after errors

– is seen throughout human decision-making, from simple
perceptual decisions (Purcell and

Kiani, 2016), to recognition memory

(Rae et al., 2014) and learning

(Cavanagh et al., 2010; Verstynen

et al., 2012). The most common

account of PES argues that it rep-

resents the cost of exerting cogni-

tive control to restore successful

performance after errors (Botvinick

et al., 2001; Gehring and Fencsik,

2001; Danielmeier and Ullsperger,

2011; Dutilh et al., 2012a; but see

Notebaert et al., 2009). Neural cor-

relates of PES appear to accord

with the recruitment of control, such

as increases in the event-related

negativity (ERN) both in scalp

EEG (Debener et al., 2005) and

intracranially (Fu et al., 2019), and

increased BOLD activity in medial

prefrontal cortex (Gehring and

Fencsik, 2001; Narayanan and

Laubach, 2008), both of which are

linked to cognitive control

processes.

Computationally, studies of

PES during instrumental learning

have related the magnitude of

PES effects to the reward

prediction error experienced by

the learner when an error is

committed, as well as to frontal

theta oscillations (Cavanagh et al.,

2010). That is, on trials where the

learner expected a reward but did

not receive one, the PES effect

(and frontal theta power) is larger

than on trials where reward expec-

tations were less certain
(Cavanagh et al., 2010). Our results here show that a

key factor influencing PES during instrumental learning

is cognitive load (Fig. 2), which, to our knowledge, has

not been manipulated in previous assays of PES during

reward-based learning. These results appear to compli-

cate a straightforward prediction error story, instead sug-

gesting that PES may be primarily observed in contexts

where top-down executive function guides decision-

making (i.e., lower cognitive load), and would thus be

especially efficacious in restoring performance after

errors. Thus, executive function may mediate the relation-

ship between prediction errors and PES. Indeed, accord-

ing to our computational modeling analysis, deviation

from a combined choice policy that reflects both reinforce-

ment learning and working memory processes provided a

compelling account of PES effects during learning

(Fig. 3). These effects could not be captured by a model

implementing reinforcement learning alone.

Similar results to those reported here have been

observed in the domain of category learning: Tam et al.

(2013) found that PES was most reliable early on in a cat-

egory learning task, even though errors were made
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throughout. Crucially, PES was only reliably related to

performance in a condition that required memory-based

rule-following rather than incremental feature integration;

that is, PES seemed to be related to a particular type of

learning strategy, one which is closer to the kind of

goal-directed behavior implied in standard studies of

PES (Ashby and Maddox, 2005; Tam et al., 2013). While

these findings are specific to category learning, they sug-

gest that the relationship between PES and learning is not

straightforward – PES may only appear when decision-

making requires some form of explicit deliberation, mem-

ory retrieval, or online memory maintenance, such as in

typical decision-making tasks, simple learning contexts

(i.e., low cognitive load; explicit rule learning), and/or dur-

ing the earliest phases of training.

Our study was inspired by discoveries showing that

learning rarely reflects the workings of a single,

monolithic learning system (Rmus et al., 2021). Indeed,

multiple qualitatively distinct learning processes act in

parallel (or opposition) across a variety of learning tasks

in addition to category learning (Ashby and Maddox,

2005) and instrumental learning tasks (Collins and

Frank, 2012), including sequential reinforcement learning

tasks (Otto et al., 2015) and various motor learning tasks

(Krakauer et al., 2019; McDougle and Taylor, 2019). In

this study we examined PES in an instrumental learning

task where people needed to learn to associate different

stimuli with discrete actions. As mentioned earlier, even

this relatively simple task has been shown to recruit (at

least) two distinct learning strategies – top-down, working

memory-based behavior that stores stimulus–response

associations in short term memory, and incremental pro-

cedural reinforcement learning (Collins and Frank, 2012;

Collins et al., 2014; Collins et al., 2017; Collins and

Frank, 2018; Collins, 2018; Master et al., 2020;

McDougle and Collins, 2021). The former strategy has

been linked to executive processes in the prefrontal cor-

tex, and the latter to the cortico-striatal dopamine system

(Collins et al., 2017). More broadly, this study fits into a

larger revision of many assumptions about instrumental

learning – instead of reflecting isolated procedural learn-

ing systems, instrumental behavior often reflects complex

interactions between executive functions (e.g., attention,

working memory, rule learning) and lower-level learning

circuits (Radulescu et al., 2019; McDougle et al., 2021;

Rmus et al., 2021). This has implications for fields such

as computational psychiatry, where researchers often

attempt to computationally quantify behavioral effects for

diagnostic purposes; our results suggest that PES, like

action selection, is complex and cannot be easily linked

to a single learning circuit.

One important caveat to any account of PES is that

PES itself can, in practice, have multiple purposes

(Purcell and Kiani, 2016). For example, it has been

demonstrated that in certain conditions slowing can be

seen when any rare event occurs, regardless of it being

an error trial or a successful trial (Notebaert et al.,

2009). We did not find robust evidence for that effect in

these data, though this alternative ‘‘orienting” account of

PES does not necessarily preclude a cognitive control

account (Danielmeier and Ullsperger, 2011; Dutilh et al.,
2012a). Future experiments could use probabilistic

reward feedback to tightly control the frequency of error

and correct trials to test alternative models of PES during

learning.

Overall, our data suggest that in instrumental learning

settings, PES may reflect a kind of normative accounting

where the efficacy of cognitive control determines the

utility of slowing after errors. Going forward, behavioral

and neural techniques (such as EEG and fMRI) can be

used to further elucidate how classic psychological

effects like PES interact with a more holistic, multi-

system understanding of human learning.
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