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Reinforcement learning (RL) models have advanced our
understanding of how animals learn and make decisions, and
how the brain supports learning. However, the neural
computations that are explained by RL algorithms fall short of
explaining many sophisticated aspects of human learning and
decision making, including the generalization of behavior to
novel contexts, one-shot learning, and the synthesis of task
information in complex environments. Instead, these aspects of
behavior are assumed to be supported by the brain’s executive
functions (EF). We review recent findings that highlight the
importance of EF in instrumental learning. Specifically, we
advance the theory that EF sets the stage for canonical RL
computations in the brain, providing inputs that broaden their
flexibility and applicability. Our theory has important
implications for how to interpret RL computations in both brain
and behavior.

Addresses
" Department of Psychology, University of California, Berkeley, United
States

2Department of Psychology, Yale University, United States
3Helen Wills Neuroscience Institute, University of California, Berkeley,
United States

Corresponding author: Collins, Collins (annecollins@berkeley.edu)

Current Opinion in Behavioral Sciences 2020, 38:66-73

This review comes from a themed issue on Computational cognitive
neuroscience

Edited by Geoff Schoenbaum and Angela J Langdon

https://doi.org/10.1016/j.cobeha.2020.10.003
2352-1546/© 2020 Elsevier Ltd. All rights reserved.

Introduction

Our ability to learn rewarding actions lies at the core of
goal-directed decision-making. Reward-driven choice
processes have been extensively modeled using rein-
forcement learning (RL) algorithms [1]. This formalized
account of learning and decision making has contributed
significantly to expanding the frontiers of artificial intel-
ligence research [2], our understanding of clinical pathol-
ogies [3,4], and research on developmental changes in
learning [5,6].

Check for
updates

A key reason for the success of the RL framework is its
ability to capture learning not only at the behavioral level,
but also at the neural level. The neural foundations of
reward-dependent learning [7], and its various successors
[8], have established a well-defined brain network that
performs key RL computations. In particular, cortico-
striatal loops enable state-dependent value-based choice
[9]. Furthermore, dopaminergic signaling of reward-pre-
diction errors (RPEs) in the midbrain and striatum
induces neural plasticity consistent with RL algorithms,
incrementally increasing/decreasing the value of actions
that yield better/worse than expected outcomes.

Despite its tremendous success, there are well known
limitations of canonical RL algorithms [10]. Historically,
many insights provided by RL research have been dem-
onstrated in relatively simplistic learning tasks, casting
doubt on how useful classic RL. models are in explaining
how humans learn and make choices in everyday life. To
solve this problem, recent research often augments RL
algorithms with learning and memory mechanisms from
other cognitive systems.

Executive functions (EF) have been identified as a key
set of psychological faculties that appear to interact with
RL computations. For instance, working memory (WM),
as a short-term cache which allows us to retain and
manipulate task-relevant information over brief periods
[11-13], occupies a central position in our ability to
organize goal-directed behavior. A related core EF, atten-
tion, also contributes to behavioral efficiency through
selective processing of subsets of environmental features
relevant for learning [14°,15,16]. Research on WM and
attention points to the prefrontal cortex (PFC) as the
primary site of these processes [17,18], suggesting that
this network shapes information processing in the RL
system during learning.

Several straightforward experimental manipulations have
revealed that an isolated RL system fails to effectively
capture human instrumental learning behavior. For exam-
ple, while online maintenance of representations in WM
is capacity-limited [19], standard RL models have no
explicit capacity constraints. This property of RL sug-
gests that if individuals rely on RL alone, learning should
not be affected by the number of rewarding stimulus-
response associations they are required to learn in a given
task. However, humans learn much less efficiently when
the number of associations to be learned in parallel
exceeds WM capacity [20,6,21°°], suggesting that RL
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operates side by side with working memory during learn-
ing. Other work has similarly shown that EF-dependent
planning contributes to choice alongside core RL. com-
putations implemented in the brain [22,23].

However, there is also evidence that EF does not only
contribute as a distinct learning system operating inde-
pendently of the brain’s RL network: Additionally, EF
may interact with RL by directly contributing to RL
computations in the brain. Models of PFC-striatal loops
[24,25], which posit that brain regions associated with EF
and RL interact directly, has inspired behavioral experi-
ments and computational models aimed at identifying
EF-RL interactions [20,21°°,14°,5]. The advent of these
modeling tools has shown that an interaction of multiple
neurocognitive domains (e.g. RL, WM, attention) may
provide a more robust account of goal-directed behavior,
one that still maintains the centrality of canonical RL
computations in instrumental learning [26,27].

In this paper, we review recent work that provides con-
verging evidence for direct, functionally coherent contri-
butions of EF to RL computations. More specifically, we
review how EF (WM and attention in particular) might
set the stage for RLL computations in the brain by defining
the relevant state space, action space, and reward function
(Figure 1). The ideas reviewed here can help inform
future computational modeling efforts and experimental
designs in the study of goal-directed behavior. Further-
more, it may shift our interpretations of past and future
findings focused on isolated RL computations towards a
broader framework that also considers EF contributions.

The ingredients of RL computations
Past work suggests that a specific brain network (primarily
cortico-striatal loops) supports RL. computations, such as

temporal difference learning [28,29] and actor-critic
learning [30,31]. These learning algorithms update esti-
mates of values via reward prediction errors (RPEs). In
machine learning, such algorithms are defined not only by
how they estimate value, but also by (at least) three
fundamental components: (1) the szate space (reflecting
the possible states s or contexts an agent may be in), (2)
the action space (reflecting the possible choices @ to be
made in a given state), and (3) the reward function R(s,a)
(signaling reinforcing outcomes). The specification of
these variables can dramatically impact the behavior of
a decision-making agent, but how these three variables
are supplied to the brain’s RL network is poorly
understood.

State space

The RL framework defines a state space over which
learning occurs. A state can be a location in the environ-
ment, a sensory feature of the environment (e.g. the
presence of a stimulus, such as a light), or a more abstract,
internally represented context (such as a point in time). At
each state, a decision-making agent enacts a choice in
pursuit of rewards [1]. The specification of the state space
significantly impacts the behavior of artificial RL. agents.
For example, in a large state space, RL performance is
limited by what is known as the curse of dimensionality
[1,10]: Learning a vast number of state-action values
quickly becomes computationally intractable. Defining
a smaller state space limited to only task-relevant states is
one path toward overcoming this challenge.

Simplifying the state space is a function sometimes
attributed to attentional filters, which can specify impor-
tant features of the environment [14°]. In this framework,
attention tags the features of the environment that RL
variables are computed over [32,33°°,34,14°]. This is
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Schematic of EF contributions (WM, attention) to the brain’s RL computations. EF can optimize RL computations in the domain of 3 relevant RL-
components: state space, reward functions, and action space. Q(s,a) reflects the estimated value of a state and action. RPE is the reward
prediction error used to update Q(s,a). Additional RL-independent contributions of EF to learning are not shown.
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accomplished by attention differentially weighing envi-
ronmental features, assigning a higher weight to task-
relevant ones [33°°] (Figure 2). For instance, if an agent is
attempting to earn reward from various stimuli that differ
along several dimensions (e.g. color, shape), with only one
dimension predicting reward, an optimized learning agent
would (1) identify that dimension, and (2) specify it as the
relevant state space for RL. That way, an agent can avoid
computing values over a larger state space containing all
possible features [35]. Computationally, this can be
achieved by implementing Bayesian inference to discover
relevant task features that RL operates over [14°]. In
addition to attention affording the reduction of task
complexity, attentional mechanisms serve another pur-
pose: Many tasks share overlapping/competing state
spaces, leading to potential interference in correct action
selection (e.g. the Stroop Task). Here again, defining a
low-dimensional representation that can be applied to
multiple tasks in the service of goal attainment makes
learning simultaneously more flexible and more robust
[36].

Importantly, the relevant state space is not always sig-
naled by explicit sensory cues. Thus, an agent often has to
make an inference about their current state [37]. Recent
work in animals suggests that RLL computations in the
striatum are likely performed over these latent belief

Figure 2

states [38°,39]. For example, markedly different dopa-
mine dynamics are observed if an expected reward is sure
toarrive (e.g. 100% chance) versus almost sure to arrive (e.
g. 90% chance) [40]. In this example, an inference about
the latent state, which indicates the probability that a
reward will arrive or not, dramatically alters RL, computa-
tions. It is hypothesized that RLL computations over these
belief states may be mediated by input from frontal
cortices involved in the discovery and representation of
state spaces (e.g. orbitofrontal cortex), further supporting
a link between EF and RL [41].

Action space

Above we reviewed a role for EFs, such as working
memory and attention, in attending to and carving out
the appropriate state space for RL.. A complementary idea
is that EF also plays a role in specifying (or simplifying)
the action space for the RL system (Figure 3). The action
space in the RL formalism is defined as the set of choices
an agent can make. The choice can take the form of a
simple motor action (e.g. a key press), a complex move-
ment (e.g. walking to the door), or an abstract choice not
defined by specific motor actions (e.g. choosing soup
versus salad). Defining the relevant action space is argu-
ably as essential for learning as defining the relevant state
space.
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EF specifies the relevant state space, allowing the RL system to efficiently operate over a subset of task-relevant states. See Figure 1 for

notations.
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Contribution of executive functions in action selection.

Recent studies indicate that the action space is a separa-
ble dimension for RL. First, behavioral evidence suggests
that reward outcomes can simultaneously be assigned to
task-relevant choices in addition to task-irrelevant motor
actions (i.e. reinforcing a right-finger button press regard-
less of the stimulus that was present) [42]. Moreover, this
process appears to be negatively related to the use of goal-
directed planning strategies, suggesting that EF enables
RL to focus in on the task-relevant action space. Simi-
larly, recent modeling work suggests that a stateless form
of action values — that is, action values computed inde-
pendently of any specific context — can exert an influence
on both choices and reaction times [43], particularly when
cognitive load is high. One hypothetical consequence of
independently learning over the action dimension is that
when executive functions are disrupted or taxed, and thus
cannot properly conjoin states and actions, action values
may be learned in a vacuum. Speculatively, this could
lead to actions being performed perseveratively even
when they are maladaptive in certain states, which could
be further linked to pathological forms of habitual behav-
ior, such as addiction [44].

Because actions link predicted choice values with
observed outcomes, one natural question beyond the
selection of actions is how the RL system differentiates
choice errors (e.g. which is the best object?) from choice
execution errors (e.g. did I grasp the desired object?). In
RL tasks that require reaching movements, behavioral

data and fMRI responses in the striatum suggest that
perceived action errors influence RPEs. That is, if the
credit for a negative outcome is assigned to the motor
system, the RL system appears to eschew updating the
value of the choice that was made [45,46]. These results
suggest that simple cognitive inferences about the cause
of errors (e.g. choice errors versus action execution €rrors)
are incorporated into RLL computations.

In more complex situations with a large action space, EF
can aid the learning process by attempting to reduce the
size of this space. That is, the brain can create ‘task-sets’,
or selective groupings of state-action associations and use
contextual cues to retrieve the appropriate task set. To
illustrate, if one learns the motor commands for copying
text on both a PC and a Mac, to avoid interference it is
beneficial to associate the specific motor sequences (ctrl-c
versus command-c) with their respective contexts (typing
on a PC keyboard versus a Mac keyboard). Indeed,
humans appear to cluster subsets of actions with associ-
ated sensory contexts during instrumental learning
[47,48°], and they do so in a manner which suggests that
high-level inferences about task structure shape low-level
reinforcement learning computations over actions. More-
over, such behaviors echo the important role of affor-
dances [49], which describe the link between specific
environmental states and the actions they afford. This
concept has recently been proposed as a novel method for
making RL more efficient in complex state-spaces [50].
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Selecting a task-set can itself be seen as a choice made in
an abstract, high-level context. Learning to make this
abstract choice may also involve RL, such that RL com-
putations occur over two different state-action spaces in
parallel — an abstract context and task-set space, and a
more concrete stimulus-action space [51°,52°]. There is
recent computational, behavioral, and neural evidence
that stacked hierarchies of RL. computations happen in
parallel over more and more abstract types of states and
choices, facilitating complex learning abilities [53,54,51°].
Such learning may be supported by hierarchies of repre-
sentations in prefrontal cortex [55,56]. This again high-
lights a role for EF in setting the stage for RLL computa-
tions to solve complex learning problems.

Rewards and expectations

Goal-directed behavior is dependent on making correct
predictions about the outcome of our choices. RPEs,
which serve as a teaching signal, occupy a central position
in the RL framework, linking midbrain dopaminergic
activity with RLL computations [7]. Most RL research

Figure 4

since has focused on simple forms of learning from out-
comes that act as primary or secondary rewards, such as
food, money, or numeric points in a game. However, the
path to an RPE is not always so straightforward: For
instance, recent work departs from the role of dopami-
nergic signaling in standard RPEs based on scalar
rewards, extending the domain of RL to learning from
indirect experiences (e.g. secondary conditioning) and
more abstract learning of associations based on sensory
features [57,58°]. These findings suggest that RL value
computations integrate information beyond primary and
secondary rewards. There is early evidence that EF could
be implicated in signaling what information is treated as a
reinforcer by the brain’s RL network.

One such example relates to the value of information.
Humans are motivated to reduce uncertainty about their
environment [59]. Thus, acquisition of novel information
should in itself function as reinforcement. Most informa-
tion-seeking mechanisms, however, are not accounted for
in the traditional RL framework. By contrast, recent work
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The traditional model of putative neural mechanisms involved in reward learning suggests that the RPEs are primarily driven by the primary and/or
secondary reinforcement. More recent work posits that RPEs are also influenced by the factors other than the scalar rewards, including

information, novelty and subgoals, as well as expectations/predictions.
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has shown that uncertainty reduction and information
gain are indeed reflected in neural RL. computations
[60]. Evidence from fMRI studies suggests that corticos-
triatal circuits incorporate the utility of information in
reward computations, such that information is conceptu-
alized as a reward that reinforces choices [61], even when
it is not valenced [59]. The prefrontal cortex also appears
to track information and uncertainty [40], which can be
held in working memory to influence decision making
[62] (Figure 4).

The theoretical framework of hierarchical RL also dis-
sociates the role of exploiting information about the
environment from the role of primary/secondary rewards,
while emphasizing that both act as a teaching signal [63].
In particular, when learning a multi-step policy that
ultimately leads to a rewarding goal, agents identify
and use subgoals en route to terminal rewards. In the
hierarchical RL framework, reaching these subgoals gen-
erates pseudo-rewards, and appears to drive activity in
canonical reward-processing regions in the brain, even
though these rewards are (1) not inherently rewarding,
and (2) are clearly distinguished from terminal rewards
[64,65]. The processing of pseudo-rewards is additionally
assumed to be driven by the prefrontal cortex, suggesting

a link to EF [66].

Beyond expanding the space of rewarding outcomes,
there is also evidence that EF may affect RPEs in an
alternative way: namely, by inputting reward expecta-
tions that have not yet been learned via the RL network.
For example, work by [67] has shown that the magnitude
of RPEs in the striatum is affected by cognitive load such
that learning a small number of stimulus-response asso-
ciations leads to attenuated striatal RPEs. This result is
explained by ‘top-down’ input of predictions from work-
ing memory: Information held in working memory in
simple learning environments creates expectations of
reward that are learned faster than in the RL system,
and thus weaken RPEs [21°°,20]. Similar results are
observed in planning tasks, where an EF-dependent
planned expectation of reward modulates the classic
representation of RPEs in the striatum [22]. Taken
together, these results demonstrate a key role for EF
in defining the reward function for the RL system, and in
contributing to the value estimation process.

Conclusions and discussion

We have reviewed and summarized computational,
behavioral and neural evidence which collectively sug-
gest that (1) executive function shapes reinforcement
learning computations in the brain, and (2) neural and
cognitive models of this interaction provide useful
accounts of goal-directed behavior. We discussed the
EF-RL interaction vis-a-vis the specification of the state
space, action space, and reward function that RL operates
over.

This new framework has important implications for
applying both neural and cognitive computational models
to study individual differences in learning. Although it is
tempting to study individual differences with simple RL
models, it is essential that we carefully consider the role of
alternative neurocognitive systems in learning. Evidence
of individual learning differences captured by an RL
model might not reflect differences in the brain’s RL
process, but rather in upstream EF that shapes RL.
Indeed, recent work on development [5,34], schizophre-
nia [68], and addiction [69,3] has shown that individual
variability in learning might be driven by both EF and
RL, and/or the interaction of the two. Thus, building
improved models of the interplay between different
neurocognitive systems should help us better understand
individual differences across the lifespan and in clinical
disorders. This expansion of the RL theoretical frame-
work can deepen our understanding of how learning is
supported in the brain and inform future interventions
and treatments.

Conflict of interest statement
Nothing declared.

CRediT authorship contribution statement
Milena Rmus: Investigation, Resources, Writing - original
draft, Writing - review & editing, Visualization. Samuel D
McDougle: Writing - original draft, Writing - review &
editing. Anne GE Collins: Conceptualization, Writing -
original draft, Writing - review & editing, Visualization,
Supervision, Funding acquisition.

Acknowledgement
This work was supported by grant ROIMH119383 to AGEC.

References and recommended reading
Papers of particular interest, published within the period of review,
have been highlighted as:

e of special interest
ee Of outstanding interest

1. Sutton RS, Barto AG: Reinforcement Learning: An Introduction.
MIT Press; 2018.

2. Botvinick M, Ritter S, Wang JX, Kurth-Nelson Z, Blundell C,
Hassabis D: Reinforcement learning, fast and slow. Trends
Cogn Sci 2019, 23:408-422 http://dx.doi.org/10.1016/j.
tics.2019.02.006.

3. Wyckmans F, Otto AR, Sebold M, Daw N, Bechara A,
Saeremans M, Kornreich C, Chatard A, Jaafari N, Noél X: Reduced
model-based decision-making in gambling disorder. Sci Rep
2019, 9:1-10 http://dx.doi.org/10.1038/s41598-019-56161-z.

4. Radulescu A, Niv Y: State representation in mental illness. Curr
Opin Neurobiol 2019, 55:160-166 http://dx.doi.org/10.1016/].
conb.2019.03.011.

5. Segers E, Beckers T, Geurts H, Claes L, Danckaerts M, van der
Oord S: Working memory and reinforcement schedule jointly
determine reinforcement learning in children: potential
implications for behavioral parent training. Front Psychol 2018,
9 http://dx.doi.org/10.3389/fpsyg.2018.00394.

6. Master SL, Eckstein MK, Gotlieb N, Dahl R, Wilbrecht L,
Collins AGE: Disentangling the systems contributing to

www.sciencedirect.com

Current Opinion in Behavioral Sciences 2021, 38:66-73


http://refhub.elsevier.com/S2352-1546(20)30148-0/sbref0005
http://refhub.elsevier.com/S2352-1546(20)30148-0/sbref0005
http://dx.doi.org/10.1016/j.tics.2019.02.006
http://dx.doi.org/10.1016/j.tics.2019.02.006
http://dx.doi.org/10.1038/s41598-019-56161-z
http://dx.doi.org/10.1016/j.conb.2019.03.011
http://dx.doi.org/10.1016/j.conb.2019.03.011
http://dx.doi.org/10.3389/fpsyg.2018.00394

72

10.

11.

12.

13.

14.

Computational cognitive neuroscience

changes in learning during adolescence. Dev Cogn Neurosci
2020, 41:100732 http://dx.doi.org/10.1016/j.dcn.2019.100732.

Schultz W, Dayan P, Montague PR: A neural substrate of
prediction and reward. Science 1997, 275:1593-1599 http://dx.
doi.org/10.1126/science.275.5306.1593.

Dabney W, Kurth-Nelson Z, Uchida N, Starkweather CK,
Hassabis D, Munos R, Botvinick M: A distributional code for
value in dopamine-based reinforcement learning. Nature 2020,
577:671-675 http://dx.doi.org/10.1038/s41586-019-1924-6.

Frank MJ: Computational models of motivated action selection
in corticostriatal circuits. Curr Opin Neurobiol 2011, 21:381-386
http://dx.doi.org/10.1016/j.conb.2011.02.013.

Vong WK, Hendrickson AT, Navarro DJ, Perfors A: Do additional
features help or hurt category learning? The curse of
dimensionality in human learners. Cogn Sci 2019, 43:e12724
http://dx.doi.org/10.1111/cogs.12724.

Miller EK, Lundqvist M, Bastos AM: Working memory 2.0. Neuron
2018, 100:463-475 http://dx.doi.org/10.1016/j.
neuron.2018.09.023.

Lundqvist M, Herman P, Miller EK: Working memory: delay
activity, yes! persistent activity? Maybe not. J Neurosci 2018,
38:7013-7019 http://dx.doi.org/10.1523/JNEUROSCI.2485-
17.2018.

Nassar MR, Helmers JC, Frank MJ: Chunking as a rational
strategy for lossy data compression in visual working
memory. Psychol Rev 2018, 125:486-511 http://dx.doi.org/
10.1037/rev0000101.

Radulescu A, Niv Y, Ballard I: Holistic reinforcement learning:
the role of structure and attention. Trends Cogn Sci 2019,
23:278-292 http://dx.doi.org/10.1016/j.tics.2019.01.010.

The authors propose a model whereby Bayesian inferences about task
structure act as an attentional process that shapes RL.

15.

16.

17.

18.

19.

20.

21.

Norman DA, Shallice T: Attention to action. In Consciousness
and Self-regulation. Edited by Davidson RJ, Schwartz GE, Shapiro
D. Boston, MA: Springer; 1986.

Allport A: Visual attention. In Foundations of Cognitive Science.
Edited by Posner MI. The MIT Press; 1989:631-682.

Badre D: Brain networks for cognitive control: four unresolved
questions. In Intrusive Thinking across Neuropsychiatric
Disorders: From Molecules to Free Will. Stringmann Forum
Reports, , vol 30. Edited by Kalivas PW, Paulus MP. Cambridge,
MA: MIT Press; 2020 J.R. Lupp, series editor in press.

Badre D, Desrochers TM: Chapter 9— hierarchical cognitive
control and the frontal lobes. In Handbook of Clinical Neurology,
, vol 163. Edited by D’Esposito M, Grafman JH. Elsevier; 2019:165-
177 http://dx.doi.org/10.1016/B978-0-12-804281-6.00009-4.

Baddeley A: Working memory: theories, models, and
controversies. Annu Rev Psychol 2012, 63:1-29 http://dx.doi.org/
10.1146/annurev-psych-120710- 100422.

Collins AGE: The tortoise and the hare: interactions between
reinforcement learning and working memory. J Cogn Neurosci
2018, 30:1422-1432 http://dx.doi.org/10.1162/jocn_a_01238.

Collins AGE, Frank MJ: Within- and across-trial dynamics of
human EEG reveal cooperative interplay between
reinforcement learning and working memory. Proc Natl Acad
Sci U S A 2018, 115:2502-2507.

The authors demonstrate that RL reward prediction errors are weakened
in low cognitive load settings through a contribution of working memory
information to RL computations.

22.

23.

Daw ND, Gershman SJ, Seymour B, Dayan P, Dolan RJ: Model-
based influences on humans’ choices and striatal prediction
errors. Neuron 2011, 69:1204-1215 http://dx.doi.org/10.1016/j.
neuron.2011.02.027.

Russek EM, Momennejad |, Botvinick MM, Gershman SJ, Daw ND:
Predictive representations can link model-based
reinforcement learning to model-free mechanisms. PLoS
Comput Biol 2017, 13:e1005768 http://dx.doi.org/10.1371/journal.
pcbi.1005768.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

Hazy TE, Frank MJ, O’Reilly RC: Towards an executive without a
homunculus: computational models of the prefrontal cortex/
basal ganglia system. Philos Trans R Soc B Biol Sci 2007,
362:1601-1613 http://dx.doi.org/10.1098/rstb.2007.2055.

Zhao F, Zeng Y, Wang G, Bai J, Xu B: A brain-inspired decision
making model based on top-down biasing of prefrontal cortex
to basal ganglia and its application in autonomous UAV
explorations. Cogn Comput 2018, 10:296-306 http://dx.doi.org/
10.1007/s12559-017-9511-3.

Hernaus D, Xu Z, Brown EC, Ruiz R, Frank MJ, Gold JM, Waltz JA:
Motivational deficits in schizophrenia relate to abnormalities
in cortical learning rate signals. Cognit Affect Behav Neurosci
2018, 18:1338-1351 http://dx.doi.org/10.3758/s13415-018-0643-
z.

Quaedflieg CWEM, Stoffregen H, Sebalo |, Smeets T: Stress-
induced impairment in goal-directed instrumental behaviour
is moderated by baseline working memory. Neurobiol Learn
Mem 2019, 158:42-49 http://dx.doi.org/10.1016/j.
nlm.2019.01.010.

O’Doherty JP, Dayan P, Friston K, Critchley H, Dolan RJ:
Temporal difference models and reward-related learning in
the human brain. Neuron 2003, 38:329-337 http://dx.doi.org/
10.1016/S0896-6273(03)00169-7.

Seymour B, O’Doherty JP, Dayan P, Koltzenburg M, Jones AK,
Dolan RJ, Friston KJ, Frackowiak RS: Temporal difference
models describe higher-order learning in humans. Nature
2004, 429:664-667 http://dx.doi.org/10.1038/nature02581.

Joel D, Niv Y, Ruppin E: Actor-critic models of the basal
ganglia: new anatomical and computational perspectives.
Neural Netw 2002, 15:535-547 http://dx.doi.org/10.1016/S0893-
6080(02)00047-3.

Khamassi M, Lacheéze L, Girard B, Berthoz A, Guillot A: Actor-
critic models of reinforcement learning in the basal ganglia:
from natural to artificial rats. Adapt Behav 2005, 13:131-148
http://dx.doi.org/10.1177/105971230501300205.

Zhang Z, Cheng Z, Lin Z, Nie C, Yang T: A neural network model
for the orbitofrontal cortex and task space acquisition during
reinforcement learning. PLoS Comput Biol 2018, 14:e1005925
http://dx.doi.org/10.1371/journal.pcbi.1005925.

Niv Y: Learning task-state representations. Nat Neurosci 2019,
22:1544-1553 http://dx.doi.org/10.1038/s41593-019-0470-8.

The author reviews a body of computational and neuroscience work
outlining the contribution of attentional processes, and associated neural
regions, to making learning more efficient (in particular by filtering out
irrelevant aspects of the performed task.

34.

35.

36.

37.

38.

Daniel R, Radulescu A, Niv Y: Intact reinforcement learning but
impaired attentional control during multidimensional
probabilistic learning in older adults. J Neurosci 2020, 40:1084-
1096 http://dx.doi.org/10.1523/JNEUROSCI.0254-19.20.

Farashahi S, Rowe K, Aslami Z, Lee D, Soltani A: Feature-based
learning improves adaptability without compromising
precision. Nat Commun 2017, 8:1768 http://dx.doi.org/10.1038/
s41467-017-01874-w.

Lieder F, Shenhav A, Musslick S, Griffiths TL: Rational
metareasoning and the plasticity of cognitive control. PLoS
Comput Biol 2018, 14:e1006043 http://dx.doi.org/10.1371/journal.
pcbi.1006043.

Gershman SJ, Jones CE, Norman KA, Monfils MH, Niv Y: Gradual
extinction prevents the return of fear: implications for the
discovery of state. Front Behav Neurosci 2013, 7:164.

Babayan BM, Uchida N, Gershman SJ: Belief state
representation in the dopamine system. Nat Commun 2018,
9:1891 http://dx.doi.org/10.1038/s41467-018-04397-0.

The authors show evidence that dopaminergic prediction errors in mice
are sensitive to an inference about which hidden state the learner is
currently in.

39.

Samejima K, Doya K: Multiple representations of belief states
and action values in corticobasal ganglia loops. Ann NY Acad
Sci 2007, 1104:213-228 http://dx.doi.org/10.1196/
annals.1390.024.

Current Opinion in Behavioral Sciences 2021, 38:66-73

www.sciencedirect.com


http://dx.doi.org/10.1016/j.dcn.2019.100732
http://dx.doi.org/10.1126/science.275.5306.1593
http://dx.doi.org/10.1126/science.275.5306.1593
http://dx.doi.org/10.1038/s41586-019-1924-6
http://dx.doi.org/10.1016/j.conb.2011.02.013
http://dx.doi.org/10.1111/cogs.12724
http://dx.doi.org/10.1016/j.neuron.2018.09.023
http://dx.doi.org/10.1016/j.neuron.2018.09.023
http://dx.doi.org/10.1523/JNEUROSCI.2485-17.2018
http://dx.doi.org/10.1523/JNEUROSCI.2485-17.2018
http://dx.doi.org/10.1037/rev0000101
http://dx.doi.org/10.1037/rev0000101
http://dx.doi.org/10.1016/j.tics.2019.01.010
http://refhub.elsevier.com/S2352-1546(20)30148-0/sbref0075
http://refhub.elsevier.com/S2352-1546(20)30148-0/sbref0075
http://refhub.elsevier.com/S2352-1546(20)30148-0/sbref0075
http://refhub.elsevier.com/S2352-1546(20)30148-0/sbref0080
http://refhub.elsevier.com/S2352-1546(20)30148-0/sbref0080
http://refhub.elsevier.com/S2352-1546(20)30148-0/sbref0085
http://refhub.elsevier.com/S2352-1546(20)30148-0/sbref0085
http://refhub.elsevier.com/S2352-1546(20)30148-0/sbref0085
http://refhub.elsevier.com/S2352-1546(20)30148-0/sbref0085
http://dx.doi.org/10.1016/B978-0-12-804281-6.00009-4
http://dx.doi.org/10.1146/annurev-psych-120710-
http://dx.doi.org/10.1146/annurev-psych-120710-
http://dx.doi.org/10.1162/jocn_a_01238
http://refhub.elsevier.com/S2352-1546(20)30148-0/sbref0105
http://refhub.elsevier.com/S2352-1546(20)30148-0/sbref0105
http://refhub.elsevier.com/S2352-1546(20)30148-0/sbref0105
http://refhub.elsevier.com/S2352-1546(20)30148-0/sbref0105
http://dx.doi.org/10.1016/j.neuron.2011.02.027
http://dx.doi.org/10.1016/j.neuron.2011.02.027
http://dx.doi.org/10.1371/journal.pcbi.1005768
http://dx.doi.org/10.1371/journal.pcbi.1005768
http://dx.doi.org/10.1098/rstb.2007.2055
http://dx.doi.org/10.1007/s12559-017-9511-3
http://dx.doi.org/10.1007/s12559-017-9511-3
http://dx.doi.org/10.3758/s13415-018-0643-z
http://dx.doi.org/10.3758/s13415-018-0643-z
http://dx.doi.org/10.1016/j.nlm.2019.01.010
http://dx.doi.org/10.1016/j.nlm.2019.01.010
http://dx.doi.org/10.1016/S0896-6273(03)00169-7
http://dx.doi.org/10.1016/S0896-6273(03)00169-7
http://dx.doi.org/10.1038/nature02581
http://dx.doi.org/10.1016/S0893-6080(02)00047-3
http://dx.doi.org/10.1016/S0893-6080(02)00047-3
http://dx.doi.org/10.1177/105971230501300205
http://dx.doi.org/10.1371/journal.pcbi.1005925
http://dx.doi.org/10.1038/s41593-019-0470-8
http://dx.doi.org/10.1523/JNEUROSCI.0254-19.20
http://dx.doi.org/10.1038/s41467-017-01874-w
http://dx.doi.org/10.1038/s41467-017-01874-w
http://dx.doi.org/10.1371/journal.pcbi.1006043
http://dx.doi.org/10.1371/journal.pcbi.1006043
http://refhub.elsevier.com/S2352-1546(20)30148-0/sbref0185
http://refhub.elsevier.com/S2352-1546(20)30148-0/sbref0185
http://refhub.elsevier.com/S2352-1546(20)30148-0/sbref0185
http://dx.doi.org/10.1038/s41467-018-04397-0
http://dx.doi.org/10.1196/annals.1390.024
http://dx.doi.org/10.1196/annals.1390.024

40.

41.

42.

43.

44.

45.

46.

47.

48.

The authors developed a novel Bayesian agent to model the processes of
leveraging clusters of latent representations of task structure (transitions
and reward functions), which allow humans to generalize learning across

Executive function shapes reinforcement learning Rmus, McDougle and Collins 73

Starkweather CK, Babayan BM, Uchida N, Gershman SJ:
Dopamine reward prediction errors reflect hidden-state
inference across time. Nat Neurosci 2017, 20:581-589 http://dx.
doi.org/10.1038/nn.4520.

Wilson RC, Takahashi YK, Schoenbaum G, Niv Y: Orbitofrontal
cortex as a cognitive map of task space. Neuron 2014, 81:267-
279 http://dx.doi.org/10.1016/j.neuron.2013.11.005.

Shahar N, Moran R, Hauser TU, Kievit RA, McNamee D,
Moutoussis M, Consortium N, Dolan RJ: Credit assignment to
state-independent task representations and its relationship
with model-based decision making. Proc Nat/ Acad Sci U S A
2019, 116:15871-15876 http://dx.doi.org/10.1073/
pnas.1821647116.

McDougle S, Collins A: Modeling the influence of working
memory, reinforcement, and action uncertainty on reaction
time and choice during instrumental learning. Psychon Bull Rev
2020:1-20 http://dx.doi.org/10.3758/s13423-020-01774-z. in p.

Everitt BJ, Robbins TW: Drug addiction: updating actions to
habits to compulsions ten years on. Annu Rev Psychol 2016,
67:23-50 http://dx.doi.org/10.1146/annurev-psych-122414-
033457.

McDougle SD, Boggess MJ, Crossley MJ, Parvin D, Ivry RB,
Taylor JA: Credit assignment in movement-dependent
reinforcement learning. Proc Nat/ Acad Sci U S A 2016,
113:6797-6802 http://dx.doi.org/10.1073/pnas.152366911.

McDougle SD, Butcher PA, Parvin DE, Mushtaq F, Niv Y, Ivry RB,
Taylor JA: Neural signatures of prediction errors in a decision-
making task are modulated by action execution failures. Curr
Biol 2019, 29:1606-1613.e5 http://dx.doi.org/10.1016/j.
cub.2019.04.011.

Collins AGE, Frank MJ: Cognitive control over learning:
creating, clustering and generalizing task-set structure.
Psychol Rev 2013, 120:190-229.

Franklin NT, Frank MJ: Compositional clustering in task
structure Iearnlng PLoS Comput Biol 2018, 14:e1006116.

similar tasks.

49.

50.

51.

The authors use computational modeling to show that humans learn
flexibly generalizable behavior by applying reinforcement learning com-

Gibson JJ: The theory of affordances. In Perceiving Acting, and
Knowing. Edited by Shaw R, Bransford J. Hillsdale, NJ: Lawrence
Eribaum; 1977:67-82.

Khetarpal K, Ahmed Z, Comanici G, Abel D, Precup D: What can |
do here? A theory of affordances in reinforcement learning.
ArXiv 2020 . 2006.15085 [Cs, Stat] http://arxiv.org/abs/2006.
15085.

Eckstein MK, Collins AG: Computational evidence for
hierarchically-structured reinforcement learning in humans..
in press. Proc Natl Acad Sci U S A 2020.

putations over multiple state and action spaces in parallel.

52.

The authors used fMRI to show that rule learning is inconsistent with pure
reinforcement learning predictions, and is better explained by the addi-
tional contribution of the Bayesian inference process — also reflected in
the neural interaction between striatum and caudal inferior frontal sulcus.

53.

Ballard I, Miller EM, Piantadosi ST, Goodman ND, McClure SM:
Beyond reward prediction errors: human striatum updates
rule values during learning. Cereb Cortex 2018, 28:3965-3975
http://dx.doi.org/10.1093/cercor/bhx259.

Badre D, Frank MJ: Mechanisms of hierarchical reinforcement
learning in corticostriatal circuits 2: evidence from fMRI. Cereb
Cortex 2012, 22:527-536.

54.

55.

56.

57.

58.

Frank MJ, Badre D: Mechanisms of hierarchical reinforcement
learning in corticostriatal circuits 1: computational analysis.
Cereb Cortex 2012, 22:509-526.

Koechlin E, Summerfield C: An information theoretical
approach to prefrontal executive function. Trends Cogn Sci
2007, 11:229-235 http://dx.doi.org/10.1016/j.tics.2007.04.005.

Badre D, D’Esposito M: Is the rostro-caudal axis of the frontal
lobe hierarchical? Nat Rev Neurosci 2009, 10:659-669.

Langdon AJ, Sharpe MJ, Schoenbaum G, Niv Y: Model-based
predictions for dopamine. Curr Opin Neurobiol 2018, 49:1-7
http://dx.doi.org/10.1016/j.conb.2017.10.006.

Sharpe MJ, Batchelor HM, Mueller LE, Yun Chang C, Maes EJP,
Niv Y, Schoenbaum G: Dopamine transients do not act as
model-free prediction errors during associative learning. Nat
Commun 2020, 11:1-10 http://dx.doi.org/10.1038/s41467-019-
13953-1.

The authors show that during learning, RL values can be assigned to
irrelevant motor actions in parallel to task-relevant choices.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

White JK, Bromberg-Martin ES, Heilbronner SR, Zhang K, Pai J,
Haber SN, Monosov IE: A neural network for information
seeking. Nat Commun 2019, 10:1-19 http://dx.doi.org/10.1038/
s41467-019-13135-z.

Mikhael JG, Kim HR, Uchida N, Gershman SJ: Ramping and state
uncertainty in the dopamine signal [Preprint]. Neuroscience
2019 http://dx.doi.org/10.1101/805366.

Charpentier CJ, Bromberg-Martin ES, Sharot T: Valuation of
knowledge and ignorance in mesolimbic reward circuitry. Proc
Natl Acad Sci U S A 2018, 115:E7255-E7264 http://dx.doi.org/
10.1073/pnas.1800547115.

Honig M, Ma WJ, Fougnie D: Humans incorporate trial-to-trial
working memory uncertainty into rewarded decisions. Proc
Natl Acad Sci U S A 2020, 117:8391-8397 http://dx.doi.org/
10.1073/pnas.1918143117.

Botvinick MM, Niv Y, Barto AG: Hierarchically organized
behavior and its neural foundations: a reinforcement learning
perspective. Cognition 2009, 113:262-280 http://dx.doi.org/
10.1016/j.cognition.2008.08.011.

Mas-Herrero E, Sescousse G, Cools R, Marco-Pallarés J: The
contribution of striatal pseudo-reward prediction errors to
value-based decision-making. Neuroimage 2019 http://dx.doi.
org/10.1016/j.neuroimage.2019.02.052.

Diuk C, Tsai K, Wallis J, Botvinick M, Niv Y: Hierarchical learning
induces two simultaneous, but separable, prediction errors in
human basal ganglia. J Neurosci 2013, 33:5797-5805 http://dx.
doi.org/10.1523/JNEUROSCI.5445-12.2013.

Ribas-Fernandes JJF, Shahnazian D, Holroyd CB, Botvinick MM:
Subgoal-and goal-related reward prediction errors in medial
prefrontal cortex. J Cogn Neurosci 2019, 31:8-23 http://dx.doi.
org/10.1162/jocn_a_01341.

Collins AGE, Ciullo B, Frank MJ, Badre D: Working memory load
strengthens reward prediction errors. J Neurosci 2017,
37:4332-4342 http://dx.doi.org/10.1523/JNEUROSCI.2700-
16.2017.

Collins AGE, Brown JK, Gold JM, Waltz JA, Frank MJ: Working
memory contributions to reinforcement learning impairments
in schizophrenia. J Neurosci 2014, 34:13747-13756 http://dx.doi.
org/10.1523/JNEUROSCI.0989-14.2014.

Renteria R, Baltz ET, Gremel CM: Chronic alcohol exposure
disrupts top-down control over basal ganglia action selection
to produce habits. Nat Commun 2018, 9:1-11 http://dx.doi.org/
10.1038/s41467-017-02615-9.

www.sciencedirect.com

Current Opinion in Behavioral Sciences 2021, 38:66-73


http://dx.doi.org/10.1038/nn.4520
http://dx.doi.org/10.1038/nn.4520
http://dx.doi.org/10.1016/j.neuron.2013.11.005
http://dx.doi.org/10.1073/pnas.1821647116
http://dx.doi.org/10.1073/pnas.1821647116
http://dx.doi.org/10.3758/s13423-020-01774-z
http://dx.doi.org/10.1146/annurev-psych-122414-033457
http://dx.doi.org/10.1146/annurev-psych-122414-033457
http://dx.doi.org/10.1073/pnas.152366911
http://dx.doi.org/10.1016/j.cub.2019.04.011
http://dx.doi.org/10.1016/j.cub.2019.04.011
http://refhub.elsevier.com/S2352-1546(20)30148-0/sbref0235
http://refhub.elsevier.com/S2352-1546(20)30148-0/sbref0235
http://refhub.elsevier.com/S2352-1546(20)30148-0/sbref0235
http://refhub.elsevier.com/S2352-1546(20)30148-0/sbref0240
http://refhub.elsevier.com/S2352-1546(20)30148-0/sbref0240
http://refhub.elsevier.com/S2352-1546(20)30148-0/sbref0245
http://refhub.elsevier.com/S2352-1546(20)30148-0/sbref0245
http://refhub.elsevier.com/S2352-1546(20)30148-0/sbref0245
http://arxiv.org/abs/2006.15085
http://arxiv.org/abs/2006.15085
http://refhub.elsevier.com/S2352-1546(20)30148-0/sbref0255
http://refhub.elsevier.com/S2352-1546(20)30148-0/sbref0255
http://refhub.elsevier.com/S2352-1546(20)30148-0/sbref0255
http://dx.doi.org/10.1093/cercor/bhx259
http://refhub.elsevier.com/S2352-1546(20)30148-0/sbref0265
http://refhub.elsevier.com/S2352-1546(20)30148-0/sbref0265
http://refhub.elsevier.com/S2352-1546(20)30148-0/sbref0265
http://refhub.elsevier.com/S2352-1546(20)30148-0/sbref0270
http://refhub.elsevier.com/S2352-1546(20)30148-0/sbref0270
http://refhub.elsevier.com/S2352-1546(20)30148-0/sbref0270
http://dx.doi.org/10.1016/j.tics.2007.04.005
http://refhub.elsevier.com/S2352-1546(20)30148-0/sbref0280
http://refhub.elsevier.com/S2352-1546(20)30148-0/sbref0280
http://dx.doi.org/10.1016/j.conb.2017.10.006
http://dx.doi.org/10.1038/s41467-019-13953-1
http://dx.doi.org/10.1038/s41467-019-13953-1
http://dx.doi.org/10.1038/s41467-019-13135-z
http://dx.doi.org/10.1038/s41467-019-13135-z
http://dx.doi.org/10.1101/805366
http://dx.doi.org/10.1073/pnas.1800547115
http://dx.doi.org/10.1073/pnas.1800547115
http://dx.doi.org/10.1073/pnas.1918143117
http://dx.doi.org/10.1073/pnas.1918143117
http://dx.doi.org/10.1016/j.cognition.2008.08.011
http://dx.doi.org/10.1016/j.cognition.2008.08.011
http://dx.doi.org/10.1016/j.neuroimage.2019.02.052
http://dx.doi.org/10.1016/j.neuroimage.2019.02.052
http://dx.doi.org/10.1523/JNEUROSCI.5445-12.2013
http://dx.doi.org/10.1523/JNEUROSCI.5445-12.2013
http://dx.doi.org/10.1162/jocn_a_01341
http://dx.doi.org/10.1162/jocn_a_01341
http://dx.doi.org/10.1523/JNEUROSCI.2700-16.2017
http://dx.doi.org/10.1523/JNEUROSCI.2700-16.2017
http://dx.doi.org/10.1523/JNEUROSCI.0989-14.2014
http://dx.doi.org/10.1523/JNEUROSCI.0989-14.2014
http://dx.doi.org/10.1038/s41467-017-02615-9
http://dx.doi.org/10.1038/s41467-017-02615-9

	The role of executive function in shaping reinforcement learning
	Introduction
	The ingredients of RL computations
	State space
	Action space
	Rewards and expectations
	Conclusions and discussion
	Conflict of interest statement
	References and recommended reading
	CRediT authorship contribution statement
	Acknowledgement


