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ScienceDirect
Reinforcement learning (RL) models have advanced our

understanding of how animals learn and make decisions, and

how the brain supports learning. However, the neural

computations that are explained by RL algorithms fall short of

explaining many sophisticated aspects of human learning and

decision making, including the generalization of behavior to

novel contexts, one-shot learning, and the synthesis of task

information in complex environments. Instead, these aspects of

behavior are assumed to be supported by the brain’s executive

functions (EF). We review recent findings that highlight the

importance of EF in instrumental learning. Specifically, we

advance the theory that EF sets the stage for canonical RL

computations in the brain, providing inputs that broaden their

flexibility and applicability. Our theory has important

implications for how to interpret RL computations in both brain

and behavior.
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Introduction
Our ability to learn rewarding actions lies at the core of

goal-directed decision-making. Reward-driven choice

processes have been extensively modeled using rein-

forcement learning (RL) algorithms [1]. This formalized

account of learning and decision making has contributed

significantly to expanding the frontiers of artificial intel-

ligence research [2], our understanding of clinical pathol-

ogies [3,4], and research on developmental changes in

learning [5,6].
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A key reason for the success of the RL framework is its

ability to capture learning not only at the behavioral level,

but also at the neural level. The neural foundations of

reward-dependent learning [7], and its various successors

[8], have established a well-defined brain network that

performs key RL computations. In particular, cortico-

striatal loops enable state-dependent value-based choice

[9]. Furthermore, dopaminergic signaling of reward-pre-

diction errors (RPEs) in the midbrain and striatum

induces neural plasticity consistent with RL algorithms,

incrementally increasing/decreasing the value of actions

that yield better/worse than expected outcomes.

Despite its tremendous success, there are well known

limitations of canonical RL algorithms [10]. Historically,

many insights provided by RL research have been dem-

onstrated in relatively simplistic learning tasks, casting

doubt on how useful classic RL models are in explaining

how humans learn and make choices in everyday life. To

solve this problem, recent research often augments RL

algorithms with learning and memory mechanisms from

other cognitive systems.

Executive functions (EF) have been identified as a key

set of psychological faculties that appear to interact with

RL computations. For instance, working memory (WM),

as a short-term cache which allows us to retain and

manipulate task-relevant information over brief periods

[11–13], occupies a central position in our ability to

organize goal-directed behavior. A related core EF, atten-

tion, also contributes to behavioral efficiency through

selective processing of subsets of environmental features

relevant for learning [14�,15,16]. Research on WM and

attention points to the prefrontal cortex (PFC) as the

primary site of these processes [17,18], suggesting that

this network shapes information processing in the RL

system during learning.

Several straightforward experimental manipulations have

revealed that an isolated RL system fails to effectively

capture human instrumental learning behavior. For exam-

ple, while online maintenance of representations in WM

is capacity-limited [19], standard RL models have no

explicit capacity constraints. This property of RL sug-

gests that if individuals rely on RL alone, learning should

not be affected by the number of rewarding stimulus-

response associations they are required to learn in a given

task. However, humans learn much less efficiently when

the number of associations to be learned in parallel

exceeds WM capacity [20,6,21��], suggesting that RL
www.sciencedirect.com
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operates side by side with working memory during learn-

ing. Other work has similarly shown that EF-dependent

planning contributes to choice alongside core RL com-

putations implemented in the brain [22,23].

However, there is also evidence that EF does not only

contribute as a distinct learning system operating inde-

pendently of the brain’s RL network: Additionally, EF

may interact with RL by directly contributing to RL

computations in the brain. Models of PFC-striatal loops

[24,25], which posit that brain regions associated with EF

and RL interact directly, has inspired behavioral experi-

ments and computational models aimed at identifying

EF–RL interactions [20,21��,14�,5]. The advent of these

modeling tools has shown that an interaction of multiple

neurocognitive domains (e.g. RL, WM, attention) may

provide a more robust account of goal-directed behavior,

one that still maintains the centrality of canonical RL

computations in instrumental learning [26,27].

In this paper, we review recent work that provides con-

verging evidence for direct, functionally coherent contri-

butions of EF to RL computations. More specifically, we

review how EF (WM and attention in particular) might

set the stage for RL computations in the brain by defining

the relevant state space, action space, and reward function

(Figure 1). The ideas reviewed here can help inform

future computational modeling efforts and experimental

designs in the study of goal-directed behavior. Further-

more, it may shift our interpretations of past and future

findings focused on isolated RL computations towards a

broader framework that also considers EF contributions.

The ingredients of RL computations
Past work suggests that a specific brain network (primarily

cortico-striatal loops) supports RL computations, such as
Figure 1
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temporal difference learning [28,29] and actor-critic

learning [30,31]. These learning algorithms update esti-

mates of values via reward prediction errors (RPEs). In

machine learning, such algorithms are defined not only by

how they estimate value, but also by (at least) three

fundamental components: (1) the state space (reflecting

the possible states s or contexts an agent may be in), (2)

the action space (reflecting the possible choices a to be

made in a given state), and (3) the reward function R(s,a)
(signaling reinforcing outcomes). The specification of

these variables can dramatically impact the behavior of

a decision-making agent, but how these three variables

are supplied to the brain’s RL network is poorly

understood.

State space
The RL framework defines a state space over which

learning occurs. A state can be a location in the environ-

ment, a sensory feature of the environment (e.g. the

presence of a stimulus, such as a light), or a more abstract,

internally represented context (such as a point in time). At

each state, a decision-making agent enacts a choice in

pursuit of rewards [1]. The specification of the state space

significantly impacts the behavior of artificial RL agents.

For example, in a large state space, RL performance is

limited by what is known as the curse of dimensionality

[1,10]: Learning a vast number of state-action values

quickly becomes computationally intractable. Defining

a smaller state space limited to only task-relevant states is

one path toward overcoming this challenge.

Simplifying the state space is a function sometimes

attributed to attentional filters, which can specify impor-

tant features of the environment [14�]. In this framework,

attention tags the features of the environment that RL

variables are computed over [32,33��,34,14�]. This is
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accomplished by attention differentially weighing envi-

ronmental features, assigning a higher weight to task-

relevant ones [33��] (Figure 2). For instance, if an agent is

attempting to earn reward from various stimuli that differ

along several dimensions (e.g. color, shape), with only one

dimension predicting reward, an optimized learning agent

would (1) identify that dimension, and (2) specify it as the

relevant state space for RL. That way, an agent can avoid

computing values over a larger state space containing all

possible features [35]. Computationally, this can be

achieved by implementing Bayesian inference to discover

relevant task features that RL operates over [14�]. In

addition to attention affording the reduction of task

complexity, attentional mechanisms serve another pur-

pose: Many tasks share overlapping/competing state

spaces, leading to potential interference in correct action

selection (e.g. the Stroop Task). Here again, defining a

low-dimensional representation that can be applied to

multiple tasks in the service of goal attainment makes

learning simultaneously more flexible and more robust

[36].

Importantly, the relevant state space is not always sig-

naled by explicit sensory cues. Thus, an agent often has to

make an inference about their current state [37]. Recent

work in animals suggests that RL computations in the

striatum are likely performed over these latent belief
Figure 2
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states [38�,39]. For example, markedly different dopa-

mine dynamics are observed if an expected reward is sure

to arrive (e.g. 100% chance) versus almost sure to arrive (e.

g. 90% chance) [40]. In this example, an inference about

the latent state, which indicates the probability that a

reward will arrive or not, dramatically alters RL computa-

tions. It is hypothesized that RL computations over these

belief states may be mediated by input from frontal

cortices involved in the discovery and representation of

state spaces (e.g. orbitofrontal cortex), further supporting

a link between EF and RL [41].

Action space
Above we reviewed a role for EFs, such as working

memory and attention, in attending to and carving out

the appropriate state space for RL. A complementary idea

is that EF also plays a role in specifying (or simplifying)

the action space for the RL system (Figure 3). The action

space in the RL formalism is defined as the set of choices

an agent can make. The choice can take the form of a

simple motor action (e.g. a key press), a complex move-

ment (e.g. walking to the door), or an abstract choice not

defined by specific motor actions (e.g. choosing soup

versus salad). Defining the relevant action space is argu-

ably as essential for learning as defining the relevant state

space.
orking
mory

ention
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Figure 3

Executive Function

Reinforcement
Learning

Q(s,a)

Action space

RPE
Policy

A2

A3

A1

Current Opinion in Behavioral Sciences 

Contribution of executive functions in action selection.
Recent studies indicate that the action space is a separa-

ble dimension for RL. First, behavioral evidence suggests

that reward outcomes can simultaneously be assigned to

task-relevant choices in addition to task-irrelevant motor

actions (i.e. reinforcing a right-finger button press regard-

less of the stimulus that was present) [42]. Moreover, this

process appears to be negatively related to the use of goal-

directed planning strategies, suggesting that EF enables

RL to focus in on the task-relevant action space. Simi-

larly, recent modeling work suggests that a stateless form

of action values – that is, action values computed inde-

pendently of any specific context – can exert an influence

on both choices and reaction times [43], particularly when

cognitive load is high. One hypothetical consequence of

independently learning over the action dimension is that

when executive functions are disrupted or taxed, and thus

cannot properly conjoin states and actions, action values

may be learned in a vacuum. Speculatively, this could

lead to actions being performed perseveratively even

when they are maladaptive in certain states, which could

be further linked to pathological forms of habitual behav-

ior, such as addiction [44].

Because actions link predicted choice values with

observed outcomes, one natural question beyond the

selection of actions is how the RL system differentiates

choice errors (e.g. which is the best object?) from choice

execution errors (e.g. did I grasp the desired object?). In

RL tasks that require reaching movements, behavioral
www.sciencedirect.com 
data and fMRI responses in the striatum suggest that

perceived action errors influence RPEs. That is, if the

credit for a negative outcome is assigned to the motor

system, the RL system appears to eschew updating the

value of the choice that was made [45,46]. These results

suggest that simple cognitive inferences about the cause

of errors (e.g. choice errors versus action execution errors)

are incorporated into RL computations.

In more complex situations with a large action space, EF

can aid the learning process by attempting to reduce the

size of this space. That is, the brain can create ‘task-sets’,

or selective groupings of state-action associations and use

contextual cues to retrieve the appropriate task set. To

illustrate, if one learns the motor commands for copying

text on both a PC and a Mac, to avoid interference it is

beneficial to associate the specific motor sequences (ctrl-c

versus command-c) with their respective contexts (typing

on a PC keyboard versus a Mac keyboard). Indeed,

humans appear to cluster subsets of actions with associ-

ated sensory contexts during instrumental learning

[47,48�], and they do so in a manner which suggests that

high-level inferences about task structure shape low-level

reinforcement learning computations over actions. More-

over, such behaviors echo the important role of affor-

dances [49], which describe the link between specific

environmental states and the actions they afford. This

concept has recently been proposed as a novel method for

making RL more efficient in complex state-spaces [50].
Current Opinion in Behavioral Sciences 2021, 38:66–73
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Selecting a task-set can itself be seen as a choice made in

an abstract, high-level context. Learning to make this

abstract choice may also involve RL, such that RL com-

putations occur over two different state-action spaces in

parallel — an abstract context and task-set space, and a

more concrete stimulus-action space [51�,52�]. There is

recent computational, behavioral, and neural evidence

that stacked hierarchies of RL computations happen in

parallel over more and more abstract types of states and

choices, facilitating complex learning abilities [53,54,51�].
Such learning may be supported by hierarchies of repre-

sentations in prefrontal cortex [55,56]. This again high-

lights a role for EF in setting the stage for RL computa-

tions to solve complex learning problems.

Rewards and expectations
Goal-directed behavior is dependent on making correct

predictions about the outcome of our choices. RPEs,

which serve as a teaching signal, occupy a central position

in the RL framework, linking midbrain dopaminergic

activity with RL computations [7]. Most RL research
Figure 4
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since has focused on simple forms of learning from out-

comes that act as primary or secondary rewards, such as

food, money, or numeric points in a game. However, the

path to an RPE is not always so straightforward: For

instance, recent work departs from the role of dopami-

nergic signaling in standard RPEs based on scalar

rewards, extending the domain of RL to learning from

indirect experiences (e.g. secondary conditioning) and

more abstract learning of associations based on sensory

features [57,58�]. These findings suggest that RL value

computations integrate information beyond primary and

secondary rewards. There is early evidence that EF could

be implicated in signaling what information is treated as a

reinforcer by the brain’s RL network.

One such example relates to the value of information.

Humans are motivated to reduce uncertainty about their

environment [59]. Thus, acquisition of novel information

should in itself function as reinforcement. Most informa-

tion-seeking mechanisms, however, are not accounted for

in the traditional RL framework. By contrast, recent work
Executive Function
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has shown that uncertainty reduction and information

gain are indeed reflected in neural RL computations

[60]. Evidence from fMRI studies suggests that corticos-

triatal circuits incorporate the utility of information in

reward computations, such that information is conceptu-

alized as a reward that reinforces choices [61], even when

it is not valenced [59]. The prefrontal cortex also appears

to track information and uncertainty [40], which can be

held in working memory to influence decision making

[62] (Figure 4).

The theoretical framework of hierarchical RL also dis-

sociates the role of exploiting information about the

environment from the role of primary/secondary rewards,

while emphasizing that both act as a teaching signal [63].

In particular, when learning a multi-step policy that

ultimately leads to a rewarding goal, agents identify

and use subgoals en route to terminal rewards. In the

hierarchical RL framework, reaching these subgoals gen-

erates pseudo-rewards, and appears to drive activity in

canonical reward-processing regions in the brain, even

though these rewards are (1) not inherently rewarding,

and (2) are clearly distinguished from terminal rewards

[64,65]. The processing of pseudo-rewards is additionally

assumed to be driven by the prefrontal cortex, suggesting

a link to EF [66].

Beyond expanding the space of rewarding outcomes,

there is also evidence that EF may affect RPEs in an

alternative way: namely, by inputting reward expecta-

tions that have not yet been learned via the RL network.

For example, work by [67] has shown that the magnitude

of RPEs in the striatum is affected by cognitive load such

that learning a small number of stimulus-response asso-

ciations leads to attenuated striatal RPEs. This result is

explained by ‘top-down’ input of predictions from work-

ing memory: Information held in working memory in

simple learning environments creates expectations of

reward that are learned faster than in the RL system,

and thus weaken RPEs [21��,20]. Similar results are

observed in planning tasks, where an EF-dependent

planned expectation of reward modulates the classic

representation of RPEs in the striatum [22]. Taken

together, these results demonstrate a key role for EF

in defining the reward function for the RL system, and in

contributing to the value estimation process.

Conclusions and discussion
We have reviewed and summarized computational,

behavioral and neural evidence which collectively sug-

gest that (1) executive function shapes reinforcement

learning computations in the brain, and (2) neural and

cognitive models of this interaction provide useful

accounts of goal-directed behavior. We discussed the

EF-RL interaction vis-a-vis the specification of the state

space, action space, and reward function that RL operates

over.
www.sciencedirect.com 
This new framework has important implications for

applying both neural and cognitive computational models

to study individual differences in learning. Although it is

tempting to study individual differences with simple RL

models, it is essential that we carefully consider the role of

alternative neurocognitive systems in learning. Evidence

of individual learning differences captured by an RL

model might not reflect differences in the brain’s RL

process, but rather in upstream EF that shapes RL.

Indeed, recent work on development [5,34], schizophre-

nia [68], and addiction [69,3] has shown that individual

variability in learning might be driven by both EF and

RL, and/or the interaction of the two. Thus, building

improved models of the interplay between different

neurocognitive systems should help us better understand

individual differences across the lifespan and in clinical

disorders. This expansion of the RL theoretical frame-

work can deepen our understanding of how learning is

supported in the brain and inform future interventions

and treatments.
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