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Human Learning of Non-Markov Structures

Juliana E. Trach (juliana.trach@yale.edu)
Department of Psychology, Yale University,
100 College St. New Haven, CT

Samuel D. McDougle
Department of Psychology, Yale University,
100 College St. New Haven, CT

Abstract

From comprehending language to learning new dance moves,
extracting complex relationships between sequences of input
is a key feature of human cognition. Prior studies
have predominantly explored the cognitive mechanisms of
structure learning using Markov sequences, where each
element depends only on the previous one. Real-world
experience, however, is rife with complex dependencies
beyond Markov processes. Here, we study the effects of
non-Markov dependencies on sequence learning by leveraging
graph learning approaches. We introduce a motor sequence
task in which transitional probabilities between pairs of
stimuli are identical from a Markov perspective, but differ
on higher-order non-Markov dependencies. We find that
participants are better able to anticipate stimuli with higher
non-Markov probabilities, providing corroboratory evidence
that humans are sensitive to statistical structure beyond
Markov dependencies. Further, behavior differed from other
participants trained only on Markov sequences. Overall, this
work demonstrates that humans can rapidly learn and represent
statistical dependencies beyond the Markov regime.

Keywords: statistical learning; graph learning; non-Markov
processes; motor sequences

Introduction

Humans are constantly parsing continuous experience into
discrete units. For example, we might parse a piece of music
into phrases or motifs or divide the process of tying your
shoe into discrete steps. Our ability to uncover structure in
sequential inputs relies on statistical learning—the automatic
extraction of statistical regularities in the environment (Aslin
& Newport, 2012; Saffran, 2020). This ability is active across
the lifespan (Ellis et al., 2021; Saffran & Kirkham, 2018)
and is fundamental to core cognitive processes like language
acquisition (Saffran et al., 1996; Erickson & Thiessen, 2015),
event perception (Levine et al., 2019; Zacks & Swallow,
2007), and motor learning (Nissen & Bullemer, 1987; Hunt
& Aslin, 2001).

Foundational work in statistical learning has established
that people readily learn item-to-item regularities from
sequences of inputs (e.g., Saffran et al., 1996; Nissen &
Bullemer, 1987). For example, infants can use transitional
probabilities between speech sounds to segment continuous
speech into words (Saffran et al., 1996). In another example,
Nissen and Bullemer (1987) found that people were faster and
more accurate at a cued motor sequence task after introducing
statistical structure into the sequence of cued key presses. In
other words, participants responded faster when they could
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predict the next key press from the current one. Such
sequences, where the probability of the next item depends
solely on the current item, are known as Markov sequences.

This work prompted questions about the limits of our
powerful statistical learning abilities. As such, the field of
“graph learning” emerged. In this domain, researchers study
sequences where the first-order transitional probabilities are
uniform (i.e., a uniform first-order Markov sequence), but
where larger-scale properties of the network structure affect
behavior. In one recent example, Kahn et al. (2018) designed
a cued-motor task where sequences of key presses were
drawn from an underlying graph structure. Crucially, the
graphs were designed such that the transitional probability
from each action to another was uniform, however there
was larger-scale structure in the graph that made certain
transitions more surprising to the participants than others.
Despite never being exposed to the whole graph structure
simultaneously and the uniform transitional probabilities
across actions, participants were slower to respond to more
(versus less) surprising transitions, demonstrating that they
had indeed learned the structure of the graph. Similar results
have been found in the domain of visual statistical learning
(Karuza et al., 2017; Schapiro et al., 2015; Rmus et al., 2022),
and there has been a great deal of interest in formalizing the
computations and mechanisms by which people extract latent
structure from continuous experience (Tang et al., 2023;
Lynn et al., 2020). Notably, these studies of graph learning
primarily leverage first-order Markov sequences.

Pure Markov sequences are rare, if not completely absent
from real-world settings. For example, consider playing
a phrase of music on the piano—while the next note
does depend on the current note, it also depends on the
entire sequence of notes that preceded. Thus, examining
how people learn and represent statistical dependencies
that exceed Markov processes is crucial to a thorough
understanding of this fundamental capacity. While Markov
sequences represent the status quo in recent graph learning
research, there are a number of earlier motor sequence
learning studies that tested the effects of higher-order
dependencies on motor sequence performance (Remillard
& Clark, 2001; Remillard, 2010; Gureckis & Love,
2010). Perhaps unsurprisingly, this work generally indicates
that longer-range dependencies do indeed influence motor
sequence execution. Still, extant work largely relies on a
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Figure 1: A) Illustration of task stimuli. Participants were
shown a sequence of 1000 stimuli, where each stimulus
consisted of four white squares and one red square. Each
row represents the stimulus for one trial. B) Participants
responded to each stimulus by pressing the key corresponding
to the red square. Their right hand was positioned over
the space, H, J, K, and L keys. C) Illustration of ring
network used to generate motor sequences. Nodes correspond
to a specific key press (and thus also a specific stimulus).
Connections between nodes represent possible transitions
between actions. Markov sequences were generated using
a ring network with uniform transition probabilities (.5)
between neighbors. The gray dashed edges indicate novel
transitions that only occurred during the Probe Phase at the
end of the experimental session. D) Illustration of transitional
structure for non-Markov sequences. Non-Markov sequences
were generated using a second-order Markov process,
wherein the next stimulus depends not only on the current
stimulus, but also on the previous stimulus. When o = 0.75
the sequence prefers to continue moving around the network
in the same direction.

4_

limited number carefully constructed sequences comprised of
transitional rules that might limit the generalizability of these
results. Further, controlling for potential motor confounds
in these studies presents a significant challenge. In the
following, we leverage ideas from the field of graph learning
to study the human learning of non-Markov dependencies and
expand on previous work examining higher-order statistical
associations in motor sequence execution.

To that end, we developed a paradigm to examine
how humans learn non-Markov statistics while explicitly
controlling for differences in Markov statistics. Importantly,
our approach allows for a concise mathematical form that
can be used to generate a diversity of specific sequences that

arise from the same underlying structure. The general logic
of the experiment is that variation in a participant’s reaction
time (RT) and accuracy across transitions is related to their
expectations: If they have a strong expectation of what will
happen next, they should be able to respond quickly and
accurately; if, instead, the next stimulus is surprising (i.e.,
violates their expectations), then they should respond more
slowly and be more likely to respond incorrectly (Hyman,
1953). We designed sequences such that the first-order
structure was a uniform Markov network (Figure 1C), but
the second-order structure of the sequences made certain
transitions more likely than others (.75 probability versus
.25 probability; Figure 1D). Thus, if participants learned
only the first-order structure, we would not expect significant
differences in performance across transitions (reflecting the
uniform Markov network). However, if they did learn the
higher-order structure, the higher-probability transitions in
this case should be performed faster than the more surprising
transitions. As a control, we compared performance between
the non-Markov learners to a separate group of participants
exposed only to the first-order Markov network structure (i.e.,
without higher-order structure; Figure 1C).

To preview our results, we found that participant behavior
was influenced by the latent graph structure in both
groups of participants. While we found strong evidence
that participants had learned the longer-range statistical
dependencies embedded in the sequences, we did not find
gross differences in learning trajectories across groups,
demonstrating that participants did not necessarily find these
more complex structures more difficult to learn. This pattern
of results implies that learning non-Markovian structures is
an efficient, and perhaps automatic, cognitive process.

Methods
Participants

We used the online platform Prolific to recruit 100
participants for each type of structure (non-Markov group:
N = 47 female, mean age = 27.8, range = 18-35; Markov
group: N = 46 female, mean age = 28.8, range = 18-35).
All participants were from the US or UK and had normal
or corrected-to-normal vision. Participants were paid $2.50
to complete the 15 minute study. We planned on excluding
participants who were very inaccurate (<50% accuracy) or
excessively slow (average RT > 2s) in their responses. No
participants met this exclusion threshold.

Task Design

The basic task was a cued-response motor task where
participants were shown a stimulus on each trial that indicated
which of five keys to press on a keyboard (Figure 1A&B).
During the task, participants positioned their right hand on
the space (thumb), H (index), J (middle), K (ring), and
L (pinky) keys. On each trial, participants were shown
five squares that were spatially aligned with the fingers of
their right hand. One of the squares was colored red on
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each trial while the others remained white. Participants
were instructed to press the key that corresponded to the
red square as quickly and accurately as possible. Once the
participant responded correctly, a new square would turn red,
thus beginning the subsequent trial. The next trial would not
start until the participant responded correctly, and participants
were instructed to correct their response if they made an
error. If the participant responded incorrectly four times in
a row, the task paused for 8 s and displayed a message to the
participant reminding them to respond accurately.

The experimental session began with instructions and a
short practice phase (15 trials). During this phase, the
key name associated with the target square (e.g., ‘space’
or ‘J’) was displayed above the red square on each trial in
order to help orient participants to the task rules. After
the practice phase, participants completed approximately
1,000 trials of the cued-response task (200 iterations per
key, 10 min). Trials with especially long (> 1500 ms) or
short (< 100 ms) reaction times (RTs) were excluded from
analysis. Additionally, for RT analyses, only trials where
the participant responded correctly on the first attempt were
included. We use median RTs for analysis to attenuate the
influence of outlier RTs.

Trial Sequences

Structured Sequences. Our objective was to create
sequences that had a uniform first-order Markov structure, but
also discoverable second-order structure that could influence
participant behavior. To do this, we started with a five-node
ring structure with uniform first-order Markov structure
(Figure 1C). In this structure, each node represents a stimulus
and corresponding key press, and the connections between
nodes represent possible transitions between stimuli. We
then imposed second-order structure onto that network by
conditioning the probability of the next node, x;11, on the
current, x;, and previous, x;_1, nodes (Figure 1D), where x is
the node identity and ¢ is the trial.

Participants in the Markov group were exposed to
sequences drawn from the first-order Markov network (Figure
1C). In this case, there was a .5 probability of transitioning
from the current node (x;) to either neighboring node on the
next trial (x;41; i.e., P(x,.41]x;) = .5; Figure 1C). For example,
if the current stimulus corresponded to node 2, then there was
an equal probability of transitioning to nodes 1 or 3 on the
next trial, but transitions to nodes 4 and 5 were not allowed.

For the non-Markov sequences, we conditioned the
probability of the next node (x;+1), on the current (x;)
and previous node (x;—1) that the participant had seen
(i.e., embedded second-order structure into the sequences).
Specifically, we biased the probabilities such that x;; was
more likely to continue in the same direction around the ring,
than it was to reverse directions. Mathematically, this process
is described by a second-order Markov model:

o X41—X =X —X—1 (mod 5)

ey

P(x,H [ —1)=
1—o else.

Here, o is a parameter between 0 and 1, where the next item
in the sequence will continue in the same direction around
the structure with probability o and reverse direction with
probability 1 — o. In our design, we set o = .75 (Figure 1D).
Thus, if participants visited node 1 and then node 2 in
sequence, they then had .75 probability of transitioning
to node 3 and a .25 probability of transitioning back to
node 1. Importantly, the first-order statistics were identical
to those of the Markov sequences — across all trials, the
probability of transitioning from node 2 to node 1 or 3
was equal (Zx,,l P(xp1|xe,x1)P(xi—1|x) = Pxiy1|x) =
.5). Therefore, any differences in the reaction times between
these two example sequences (e.g., 1-2-3 versus 1-2-1) must
arise from learning the second-order structure. Importantly,
we shuffled the assignment of keys to nodes for each
participant such that adjacent fingers were not necessarily
assigned to adjacent nodes in the ring structure. Participants
were never informed of the structure of the trial sequences.

Probe Phase. We added a brief “probe” phase (30 trials)
after the 1,000 trials of training on the structured sequences.
In this phase, participants responded to novel transitions
that violated the sequence structure of the first 1,000 trials.
For example, node 2 could transition to node 1 or node 3
during the first 1,000 trials, so during the probe phase, node
2 transitioned only to node 4 or node 5 (Figure 1C, grey
lines). If participants learned the sequence structure in the
structured sequence phase, they should be slower to respond
during the probe trials, since those transitions violated their
expectations. There was no break or any task feature (other
than the new transitions) that informed participants about the
beginning of the probe phase. We opted to keep this phase
extremely short to avoid participants learning a new structure.

Results

Learning of Non-Markov Statistics from Sequential
Input

Our primary question was whether participants trained on
the non-Markov transitions would learn the second-order
transitional structure that we imposed on the motor
sequences. In general, we expected participants to be more
accurate and faster in their responses when they have stronger
expectations about what will happen next. That is, if the
participant had a strong expectation that the next key press
would be with their thumb, they should be able to efficiently
plan and execute that response. In contrast, if the next
stimulus violated their expectations, they should be slower
to make the corresponding response and they may make an
error.

We thus compared performance between trials where the
sequence continued in the same direction around the ring
(“continue trials”) to trials where the sequence reversed
direction ("reverse trials”). In the non-Markov sequences, the
next node is more likely to continue in the same direction
around the ring (.75 probability), than it is to reverse
directions (.25 probability). Thus, if participants learned
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the non-Markov structure of the sequences, they should be
more accurate and faster on continue versus reverse trials.
In contrast, if participants attended only to the first-order
Markov structure of the sequences (uniform .5 transitional
probability to neighboring nodes), then we would not predict
differences in accuracy or RT across these trials types. We
excluded the first 250 trials from this analysis to focus on
trials where participants had enough exposure to learn the
latent structure.

We found clear evidence that participants trained on the
non-Markov sequences did indeed learn the second-order
structure from this analysis, consistent with previous results
(Remillard & Clark, 2001). Participants were less accurate
and slower when the next trial reversed direction (i.e., the
less likely transition) versus when it continued in the same
direction (Figure 2A; paired sample t test: accuracy: #(99)
=4.59, p < .001; RT: #(99) = -4.87, p < .001). This result
demonstrates that individuals extracted the non-Markov
statistical structure within the motor sequences, expanding on
previous work on graph learning.

Comparison to Participants Trained on Markov
Sequences

We compared the behavior of the non-Markov group to
the behavior of a separate group of participants trained on
sequences drawn from the first-order Markov network as
a control. We performed a mixed-factor ANOVA (Group
[non-Markov versus Markov] x Trial type [continue versus
reverse]) to examine differences in behavior between the two
groups (excluding the first 250 trials). We found that while
there were no overall differences in behavior between the
two groups (Figure 2A&B; main effect of Group: accuracy:
F(1,198) = 0.82, p = .365; RT: F(1,198) = 0.06, p = .802),
there were indeed significant differences in RT between trial
types (main effect of Trial type: RT: F(1,198) = 15.03, p
< .001, n,z, = 0.07; although not in accuracy: F(1,198)
= 0.31, p = .577). Crucially, we found that the effect of
continuing versus reversing direction was different between
groups (interaction Group x Trial type: accuracy: F(1,198) =
60.59, p < .001, n% =0.23; RT: F(1,198) = 125.7, p < . 001,
nf, = 0.39). Thus, we can conclude that participants trained
on Markov versus non-Markov sequences extracted different
underlying structures based on the sequences they saw.
Intriguingly, while the non-Markov group performed
worse on reverse (i.e., the less likely transition) versus
continue trials, participants trained on the Markov networks
showed the opposite pattern of behavior: They were more
accurate and faster when the next trial reversed direction
around the ring versus continued in the same direction (paired
sample t test: accuracy: #(99) = -6.77, p < .001; RT: #99) =
11.46, p < .001). While we expected equivalent performance
across trial types in this group (because the transitional
probabilities are uniform), there is one rather straightforward
explanation for this effect that is wholly unrelated to the
learning of the statistical structure: Due to the ring structure

A non-Markov group

1 kR _kRK_
= 600
75 _ =
5 5 £ 400
g =
® o5 2001

- 0- -
continue reverse continue reverse

trial type trial type
B Markov group
1 kR _kkK_
600+
> 75 - —
© |
S 5 5,400
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® o5 20071
continue reverse " continue reverse
trial type trial type
C/\
@ 1001
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Figure 2: A) non-Markov group: Comparison of accuracy
(left) and median RT (right) on “continue” trials (.75
probability) versus “reverse” trials (.25 probability). Error
bars = 1 SEM. B) Markov group: Comparison of accuracy
(left) and median RT (right) on “continue” trials (.5
probability) versus “reverse” trials (.5 probability). Error
bars = 1 SEM. C) Difference in RT between continue and
reverse trials (continue trial median RT - reverse trial median
RT) as a function of trial bin. Positive values indicate
faster performance on reverse trials, whereas negative values
indicate faster performance on continue trials. Orange =
non-Markov group, Blue = Markov group. Inset depicts RT
on continue (c) versus reverse (r) trials during the first 50
trials. *p < .05, ***p < .001

of the transitions, reversing direction within this network
necessarily means repeating the same action from two trials
back (e.g., trial,_, = thumb, trial,_; = pinky, trial, = thumb).
Thus, participant responses might be facilitated by returning
to a recently prepared motor response. We note that this same
effect would influence the reversal trials in the non-Markov
group as well, but, critically, in a direction that goes against
the predicted effect of the non-Markov regularities.

Thus, we reasoned that if the decrease in RTs for reverse
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trials in the Markov group was due to a recency bias (rather
than learning), then we should see the same facilitation on
reverse trials in the non-Markov group early in the session
before they had learned the statistical structure. To test this,
we compared accuracy and RT on continue versus reverse
trials in the non-Markov group during the first 50 trials of
the task. We chose the first 50 trials of the task (rather
than a smaller or larger number) to limit the amount of
exposure that participants had to the structure while also
ensuring enough reverse trials for analysis, since reversals
were infrequent occurrences (.25 probability). Consistent
with our hypothesis, we found that participants were indeed
faster on reverse trials early in the task in the non-Markov
condition (Figure 2C, inset; #(99) = 2.24, p = .028, d = 0.1),
although this effect was not reliable in accuracy (#(99) = 1.04,
p = .302). This analysis suggests that RTs on reverse trials
were indeed facilitated prior to any learning, consistent with
a simple motor facilitation effect. Exposure to the latent
statistical structure can then overcome and reverse this prior.

Further corroborating this account, we found that the
facilitation of continue (relative to reverse) trials in the
non-Markov group emerged gradually over the course of the
session. To quantify this, we divided the task into ten-trial
bins (100 bins total) and calculated a difference score for RTs
for continue versus reverse trials (continue trial RTs-reverse
trial RTs). We then entered these difference scores into
a linear mixed effects model with Bin Number and Group
as fixed effects and random slopes and intercepts for each
participant. In this case, we found no significant effect of
Bin number (Figure 2C; B = -0.06, p = .219), however there
was a significant effect of Group (B = -0.63, p < .001),
such that RT difference scores were more negative in the
non-Markov group, reflecting better performance on continue
versus reverse trials. Crucially, there was a significant
interaction between Group and Bin number (f = -0.19, p
= .0057). We conducted additional linear mixed effects
analyses on each experiment separately to further investigate
this interaction.

As predicted, we found a significant effect of Bin number
in the non-Markov group (B = -0.25, p < .001) reflecting
the emergence of this effect with practice. This was not the
case in the Markov group (f = -0.06, p = .194). In this
case, the facilitation of reverse trial persisted at the same
level throughout the task, consistent again with an inherent
(rather than learned) bias. Taken together, these results
establish that participants in the non-Markov group learned
the second-order statistics over time, even overcoming the
competing effect of recency.

Comparable Learning of Non-Markov and Markov
Structures

Finally, our design allowed us to examine differences in
learning outcomes and trajectories across groups. There were
no differences in overall accuracy (Figure 3A; non-Markov
group: M = 89.8%; Markov group: M = 89.5%; t(198) =
0.28, p = .776) nor median reaction time (RT; Figure 3B;

NM M
1' kKK kKK
§ . § 757
S S
8 Q
S . & .25
0-
B D NM M
600- kKR KRR

700+

(ms)

500

25 50 75

probe
trial bin (10 trials/bin)

Figure 3: A) Average accuracy in the non-Markov (NM)
versus Markov (M) groups. B) Median RT in the non-Markov
versus Markov groups. C) Accuracy during the last 30
trials of the structured sequence phase versus probe phase
for non-Markov (left) and Markov (right) groups. D) Median
RT during the last 30 trials of the structured sequence phase
versus probe phase for non-Markov (left) and Markov (right)
groups. E) RT learning curve over trial bins and probe phase.
wHEp <001

non-Markov group: average median RT = 551ms; Markov
group: average median RT = 553ms; #(194.08) = 0.07, p
= .945) between the non-Markov and Markov versions of
the task. We also compared accuracy and median RT at
the end of structured sequences (last 30 trials) to accuracy
and median RT during the probe phase (30 trials at the end
of the task where the learned graph structure was violated)
across the two groups. We used a mixed-factor ANOVA to
do this with a between-subjects factor for Group (Markov
versus non-Markov) and a within-subject factor for Phase
(structured versus probe). If participants learned better in
one group or the other, we would expect an interaction
between Phase and Group, reflecting differential performance
reductions during the probe phase. As expected, participants
were slower and less accurate during the probe phase as
compared to the end of the structured sequences (Figure
3C&D; Accuracy: main effect of Phase: F(1,198) = 33.39,
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p <.001, nIZJ = 0.14; non-Markov group, paired t-test: #(99) =
3.91, p < .001; Markov group, paired t-test: #(99) =4.26, p <
.001; Median RT: main effect of Phase: F(1,198) = 100.49, p
< .001, T]?, = 0.34; non-Markov group, paired t-test: #(99) =
6.83, p < .001; Markov group, paired t-test: #(99) =743, p
< .001). This effect did not differ across groups (Accuracy:
main effect of Group: F(1,198) = 0.08, p = .782; Group x
Phase: F(1,198) = 0.53, p = .467; Median RT: main effect of
Group: F(1,198) = 0.11, p = .736; Group x Phase: F(1,198)
= 0.008, p = .929), further supporting the idea that learning
was comparable across graph structures.

Additionally, we found that the learning trajectories
(measured with median RT) were similar across the two
groups (Figure 3E). To test this statistically, we divided
the task into bins of 10 trials (100 bins), calculated the
average median RT in each of these bins, and performed a
one-sample t-test to assess whether the difference between
the two RT learning curves (i.e., Markov versus non-Markov)
was reliably different than 0. We also repeated this analysis
for only the first quarter of trials (25 bins), where one might
expect differences in learning to be most prominent. Again,
we found no evidence of learning differences across the two
versions of the task (All data: #(99) = 1.46, p =0.147; first 250
trials: #(24) = 1.4, p = 0.175). Taken together, these results
show that participants performed at a similar level overall
regardless of whether they were trained on non-Markov or
Markov sequences and despite the increased complexity of
the non-Markov sequences.

Discussion

Here, we developed a motor sequence task to examine
statistical learning of non-Markov dependencies in sequential
experience. We drew on ideas from graph learning to
generate sequences with non-Markov structure, but with
uniform Markov statistics (Remillard & Clark, 2001),
thus eliminating confounding Markov dependencies. We
found robust behavioral evidence that participants learned
the non-Markov structure. Moreover, comparing against
participants trained on Markov sequences with the same
first-order structure, non-Markov learners exhibited distinct
patterns of behavior. Taken together, these results show
that people rapidly, and perhaps automatically, extract latent
statistical structures within sequences beyond simple Markov
dependencies. Further, our generalizable approach allows for
rigorous investigation of the limits of these abilities in future
work.

We note that this work sits at the intersection of two
larger literatures. On one side, previous motor sequence
learning work provided initial evidence that long-range
dependencies in sequential input impact motor sequence
execution (Remillard & Clark, 2001; Remillard, 2010;
Gureckis & Love, 2010). On the other, research on graph
learning has suggested that people build structured cognitive
representations from sequential input that impact prediction
and behavior (Lynn et al., 2020; Kahn et al., 2018; Karuza

et al., 2017). Thus, one intriguing question is about
the structure of the representations that people construct
during learning. While our approach implies that people
are extracting the latent structure, there is some evidence
that similar behavioral effects could arise from simpler
association learning (Gureckis & Love, 2010), instead of
constructing the whole latent structure. Our approach makes
this question more tractable to test, as the underlying graph
structure is likely easier learned than the transitional rules
employed in previous motor sequence learning work.

One surprising feature of our results was that participants
in the Markov group performed significantly better on
reverse trials relative to continue trials. This is in stark
contrast to the non-Markov group, which exhibited facilitated
performance on continue trials due to the second-order
statistics. We hypothesized that this effect was driven by the
fact that reverse trials necessarily involved repeating a recent
response, thus giving rise to a recency bias. Indeed, we found
statistical evidence to support this account, which further
strengthens our central findings. Specifically, the effects of
the non-Markov structure were so strong that they overcame
the natural bias to respond more quickly (and accurately) to
reverse trials.

A potentially exciting result from this work is that there
were no overall differences in performance or learning
trajectory between the two groups of participants. From
one perspective, one might expect better overall performance
in the non-Markov condition, since participants have more
information to predict upcoming stimuli. Yet from another
perspective, one might expect slower learning in the
non-Markov condition (even if performance is facilitated
overall) since these dependencies are more complex to learn
and internally represent. However, we did not observe
either of these patterns of behavior. Our results could be
interpreted as further evidence of the power of statistical
learning—participants readily acquired the second-order
dependencies at the same rate as the Markov statistics. At
this point, we hesitate to take a strong interpretation of
these results, as the design of the networks meant that the
second-order dependencies were working against inherent
motor biases that we observed in the Markov group. A
productive next step would be to vary o in the non-Markov
sequences and train participants on sequences that align with
the motor bias to better quantify the effect of statistical
learning versus motor processing.

Statistical learning from sequential input is a fundamental
component of human cognition and underpins a wide range
of cognitive capacities. This work presents a method for
examining how people extract and represent higher-order
statistical regularities in the environment. In ongoing work,
we are using computational modeling to characterize learning
trajectories and internal representations of non-Markov
structure learning. Examining our ability to uncover complex
statistical relationships from continuous experience is central
to understanding many facets of behavior.
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